Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
ACP | Articles | Volume 19, issue 2
Atmos. Chem. Phys., 19, 1147-1172, 2019
https://doi.org/10.5194/acp-19-1147-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 1147-1172, 2019
https://doi.org/10.5194/acp-19-1147-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Jan 2019

Research article | 30 Jan 2019

Cloud feedbacks in extratropical cyclones: insight from long-term satellite data and high-resolution global simulations

Daniel T. McCoy et al.
Viewed  
Total article views: 929 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
676 240 13 929 62 10 13
  • HTML: 676
  • PDF: 240
  • XML: 13
  • Total: 929
  • Supplement: 62
  • BibTeX: 10
  • EndNote: 13
Views and downloads (calculated since 16 Aug 2018)
Cumulative views and downloads (calculated since 16 Aug 2018)
Viewed (geographical distribution)  
Total article views: 726 (including HTML, PDF, and XML) Thereof 719 with geography defined and 7 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 25 Apr 2019
Publications Copernicus
Download
Short summary
The largest single source of uncertainty in the climate sensitivity predicted by global climate models is how much low-altitude clouds change as the climate warms. Models predict that the amount of liquid within and the brightness of low-altitude clouds increase in the extratropics with warming. We show that increased fluxes of moisture into extratropical storms in the midlatitudes explain the majority of the observed trend and the modeled increase in liquid water within these storms.
The largest single source of uncertainty in the climate sensitivity predicted by global climate...
Citation