Articles | Volume 19, issue 2
https://doi.org/10.5194/acp-19-1129-2019
https://doi.org/10.5194/acp-19-1129-2019
Research article
 | 
29 Jan 2019
Research article |  | 29 Jan 2019

Long-term simulation of the boundary layer flow over the double-ridge site during the Perdigão 2017 field campaign

Johannes Wagner, Thomas Gerz, Norman Wildmann, and Kira Gramitzky

Related authors

Evaluation of a forest parameterization to improve boundary layer flow simulations over complex terrain. A case study using WRF-LES V4.0.1
Julian Quimbayo-Duarte, Johannes Wagner, Norman Wildmann, Thomas Gerz, and Juerg Schmidli
Geosci. Model Dev., 15, 5195–5209, https://doi.org/10.5194/gmd-15-5195-2022,https://doi.org/10.5194/gmd-15-5195-2022, 2022
Short summary
Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia
Sonja Gisinger, Johannes Wagner, and Benjamin Witschas
Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020,https://doi.org/10.5194/acp-20-10091-2020, 2020
Short summary
Multi-lidar wind resource mapping in complex terrain
Robert Menke, Nikola Vasiljević, Johannes Wagner, Steven P. Oncley, and Jakob Mann
Wind Energ. Sci., 5, 1059–1073, https://doi.org/10.5194/wes-5-1059-2020,https://doi.org/10.5194/wes-5-1059-2020, 2020
Short summary
Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign
Norman Wildmann, Nicola Bodini, Julie K. Lundquist, Ludovic Bariteau, and Johannes Wagner
Atmos. Meas. Tech., 12, 6401–6423, https://doi.org/10.5194/amt-12-6401-2019,https://doi.org/10.5194/amt-12-6401-2019, 2019
Short summary
Improving boundary layer flow simulations over complex terrain by applying a forest parameterization in WRF
Johannes Wagner, Norman Wildmann, and Thomas Gerz
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-77,https://doi.org/10.5194/wes-2019-77, 2019
Preprint retracted
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024,https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
The Lagrangian Atmospheric Radionuclide Transport Model (ARTM) – sensitivity studies and evaluation using airborne measurements of power plant emissions
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
Atmos. Chem. Phys., 24, 2511–2534, https://doi.org/10.5194/acp-24-2511-2024,https://doi.org/10.5194/acp-24-2511-2024, 2024
Short summary
Large-eddy-model closure and simulation of turbulent flux patterns over oasis surface
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024,https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Technical note: Exploring parameter and meteorological uncertainty via emulation in volcanic ash atmospheric dispersion modelling
James M. Salter, Helen N. Webster, and Cameron Saint
EGUsphere, https://doi.org/10.5194/egusphere-2023-2870,https://doi.org/10.5194/egusphere-2023-2870, 2023
Short summary
Impact of the Guinea coast upwelling on atmospheric dynamics, precipitation and pollutant transport over southern West Africa
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023,https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary

Cited articles

Banta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., and Orr, B. W.: Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and effects on local flows, J. Appl. Meteor., 43, 1348–1365, https://doi.org/10.1175/JAM2142.1, 2004. a
Blackadar, A. K.: Boundary Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions, B. Am. Meteorol. Soc., 38, 283–290, 1957. a, b, c, d, e, f
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001. a
Daniels, M. H., Lundquist, J. K., Mirocha, J. D., Wiersema, D. J., and Chow, F. K.: A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) model, Mon. Weather Rev., 144, 3725–3747, https://doi.org/10.1175/MWR-D-16-0049.1, 2016. a
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a 3-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, https://doi.org/10.1007/BF00119502, 1980. a
Download
Short summary
Long-term WRF-LES simulations were performed with a horizontal resolution of 200 m for a period of 49 days during the Perdigão campaign. Simulation results were used to characterize the meteorological conditions and to analyse characteristic flow patterns. It could be shown that thermally driven flows including low-level jets frequently occurred during the observation period. Model results were in very good agreement with observations in spite of the long simulation time.
Altmetrics
Final-revised paper
Preprint