Supplement of

Alkyl nitrates in the boreal forest: formation via the NO$_3^-$, OH- and O$_3$-induced oxidation of biogenic volatile organic compounds and ambient lifetimes

Jonathan Liebmann et al.

Correspondence to: John N. Crowley (john.crowley@mpic.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Table S1: Rate coefficients and branching ratios used for the calculations of $P_{\Sigma AN}$

<table>
<thead>
<tr>
<th>VOC</th>
<th>k(NO$_3$) at 298 K (molecules cm$^{-3}$ s$^{-1}$)</th>
<th>αNO$_3$</th>
<th>k(OH) at 298 K (molecules cm$^{-3}$ s$^{-1}$)</th>
<th>αRO$_2$</th>
<th>k(O$_3$) at 298 K (molecules cm$^{-3}$ s$^{-1}$)</th>
<th>αO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-pinene</td>
<td>6.2×10$^{-12}$ 1</td>
<td>0.15 $^2.5$</td>
<td>5.3×10$^{-11}$ 1</td>
<td>0.18 6</td>
<td>9.6×10$^{-17}$ 1</td>
<td>0.80 1</td>
</tr>
<tr>
<td>β-pinene</td>
<td>2.5×10$^{-12}$ 1</td>
<td>0.40 $^2.3$</td>
<td>7.6×10$^{-11}$ 1</td>
<td>0.24 2</td>
<td>1.9×10$^{-17}$ 1</td>
<td>0.30 1</td>
</tr>
<tr>
<td>Δ-carene</td>
<td>9.1×10$^{-12}$ 1</td>
<td>0.77 3</td>
<td>8.8×10$^{-11}$ 2</td>
<td>0.23 2</td>
<td>4.9×10$^{-17}$ 1</td>
<td>0.86 1</td>
</tr>
<tr>
<td>d-limonene</td>
<td>1.2×10$^{-11}$ 1</td>
<td>0.67 $^2.5$</td>
<td>1.7×10$^{-10}$ 1</td>
<td>0.23 2</td>
<td>2.2×10$^{-16}$ 1</td>
<td>0.75 1</td>
</tr>
<tr>
<td>isoprene</td>
<td>6.5×10$^{-13}$ 1</td>
<td>0.70 1</td>
<td>1.0×10$^{-10}$ 1</td>
<td>0.07 4</td>
<td>1.28×10$^{-17}$ 1</td>
<td>1.00 1</td>
</tr>
<tr>
<td>unattributed</td>
<td>-</td>
<td>0.70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

αNO$_3$: yield of AN in the reaction of the BVOC with NO$_3$ in air.

αRO$_2$: yield of AN in the reaction of the peroxy radical (formed in OH + BVOC + O$_2$) with NO.

αO$_3$ is the yield of peroxy radicals formed in the reaction of each BVOC with O$_3$ in air.

Figure S1: Overview of meteorological measurements during IBAIRN. The grey shaded regions represent nighttime.
Figure S2: Calculated OH reactivity (k_{OH}) and O$_3$ reactivity (k_{O3}) from VOC measurements.

k_{BVOC} (biogenic VOCs) consists of α-pinene, β-pinene, Δ-carene, d-Limonene, isoprene, and camphene.

k_{OVOC} (oxidised VOCs) consists of propanoic acid, butanoic acid, isopentanoic acid, pentanoic acid, hexanoic acid, 1-pentanol, 1-penten-3-ol, cis-3-hexen-1-ol, 1-hexanol.

k_{VOC} (remaining VOCs) consists of benzene, toluene, p/m-xylene, styrene, o-xylene, 1,2,4-trimethylbenzene, 1,2,3-trimethylbenzene, hexane, pentanal, hexanal, methacrolein, 4-acetyl-1-methylcyclohexene, nopinone, heptanal, octanal, nonanal, decanal, ethane and propane.
Figure S3: Aerosol surface area during IBAIRN.
Figure S4: Upper: AMS-nitrate versus NOx (5th-22nd Sept 2016).
Lower: AMS-nitrate versus the total ANs production rate colour-coded with AMS-organic mass.
Figure S5: Campaign averaged relative contribution of the measured organic nitrates as measured by the I-CIMS (assuming equal sensitivity across the mass-range).