Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 13 | Copyright
Atmos. Chem. Phys., 18, 9823-9830, 2018
https://doi.org/10.5194/acp-18-9823-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note 12 Jul 2018

Technical note | 12 Jul 2018

Technical note: Updated parameterization of the reactive uptake of glyoxal and methylglyoxal by atmospheric aerosols and cloud droplets

Leah A. Curry, William G. Tsui, and V. Faye McNeill Leah A. Curry et al.
  • Department of Chemical Engineering, Columbia University, New York, NY 10027, USA

Abstract. We present updated recommendations for the reactive uptake coefficients for glyoxal and methylglyoxal uptake to aqueous aerosol particles and cloud droplets. The particle and droplet types considered were based on definitions in GEOS-Chem v11, but the approach is general. Liquid maritime and continental cloud droplets were considered. Aerosol types include sea salt (fine and coarse), with varying relative humidity and particle size, and sulfate/nitrate/ammonium as a function of relative humidity and particle composition. We take into account salting effects, aerosol thermodynamics, mass transfer, and irreversible reaction of the organic species with OH in the aqueous phase. The new recommended values for the reactive uptake coefficients in most cases are lower than those currently used in large-scale models, such as GEOS-Chem. We expect application of these parameterizations will result in improved representation of aqueous secondary organic aerosol formation in atmospheric chemistry models.

Download & links
Publications Copernicus
Download
Short summary
We have developed a new parameterization of the reactive uptake of glyoxal and methylglyoxal by atmospheric aerosols and cloud droplets. Our calculations take into account newly available information regarding the gas–particle partitioning of these species and their chemical processing in the aerosol phase. We expect application of these parameterizations will result in improved representation of aqueous secondary organic aerosol formation in atmospheric chemistry models.
We have developed a new parameterization of the reactive uptake of glyoxal and methylglyoxal by...
Citation
Share