Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 18, issue 13
Atmos. Chem. Phys., 18, 9617–9629, 2018
https://doi.org/10.5194/acp-18-9617-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 9617–9629, 2018
https://doi.org/10.5194/acp-18-9617-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Jul 2018

Research article | 09 Jul 2018

An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France

Samuël Weber et al.

Viewed

Total article views: 2,198 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,399 742 57 2,198 161 34 46
  • HTML: 1,399
  • PDF: 742
  • XML: 57
  • Total: 2,198
  • Supplement: 161
  • BibTeX: 34
  • EndNote: 46
Views and downloads (calculated since 02 Jan 2018)
Cumulative views and downloads (calculated since 02 Jan 2018)

Viewed (geographical distribution)

Total article views: 2,197 (including HTML, PDF, and XML) Thereof 2,169 with geography defined and 28 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

Discussed (preprint)

No discussed metrics found.
Latest update: 13 Jul 2020
Publications Copernicus
Download
Short summary
The oxidative potential (OP) of the PM appears to be a relevant proxy of health outcomes from PM exposure. We developed a new statistical model using a coupled approach with positive matrix factorization (PMF) and multiple linear regressions to attribute a redox activity per PM sources. Our results highlight the importance of biomass burning and vehicular sources to explain the observed OP of PM. A different contribution of the sources is observed when considering OP or the mass of the PM10.
The oxidative potential (OP) of the PM appears to be a relevant proxy of health outcomes from PM...
Citation