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Figure S1. Time series of 2-factor PMF solution for Ponderosa pine dataset.
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Figure S2. Comparison of mass spectra from 2-, 3-, and 4-factor PMF solutions. The two

factors that account for most of the variability (Factor 1 and Factor 2) do not change

substantially as the number of factors increases. The additional factors in the 3- and 4-

factor solutions have similar mass spectra to Factor 1 and Factor 2.



B. High- and low-temperature factors
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Figure S3. Comparison of time series from 2-, 3-, and 4-factor PMF solutions. The time
series shown is the total instrument signal from a representative fire of Ponderosa pine (a
part of Fire #37). The individual factors are from the PMF analysis of the extended time
series (in which all ten fires of Ponderosa pine were concatenated). The left-side plots (A)
show the stacked contributions of the factors, compared to the measured signal. The small
plots on the right (B) show the time series of the individual factors (solid lines). The high-
and low-temperature factors were fit to each factor in the 3- and 4-factor solutions. The
best-fit was done using the extended time series. These best-fits are shown as the shaded
areas in the right-side plots (B), and the best-fit equation and correlation coefficient are
also provided.



Comparison of emission profile
between each fuel and average (ncps/total VOC ncps)
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Figure S4. Comparison of (a) high- and (b) low-temperature pyrolysis VOC emission profiles (ncps/total VOC ncps) between
each fuel and average of 15 different fuels shown in Figure 3. Data points in individual panels correspond to well-fitted 434 ion
peaks. Slope and correlation coefficient (r2) are obtained using logarithmic fraction, i.e., log(ncps/total VOC ncps).



7. Juniper

-1 1:1
1074 Fitting line El
slope = 1.016 + 0.006
r’=0.89
102 CeHeO5H*
= (m/z 127.039)
F- NH,H*
5 (m/z 18.0338)
3
103 CeH,0,-H*
. (m/z 125.023)
. C,H,0,H"
2 '/(m/z 109.028)
104 T T T T
104 103 102 101
Average
10. Ceanothus
Fitting line El
101 {|slope = 1.000 + 0.007 )
CHOH* — _ ||r*=0.84
(m/z 133.065) . A
CgH O-H*
(m/z119.049) 4§ 1077
-
B
CHO,HY —& |
(m/z 149.060%
-3
CyoHy6H*
/ C1oHy60" -H*
(m/z 153.127)
104 T T T T
104 103 102 101
Average
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( b ) Low-temperature pyrolysis factor
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Figure S4. Continued.



Juniper

Ceanothus

7. Juniper

- Fitting line
slope = 0.971 + 0.004
4]r?=0.90 S

I
102
Average

10t

10. Ceanothus

—— Fitting line
slope = 1.030 + 0.006

102 10t

Average

Figure S4. Continued.

Bear grass

Chamise-contaminated

8. Bear grass

- Fitting line

r’=0.92

HCN-H*
(m/z 28.0182)

T
103 102

Average

101

11. Chamise-contaminated

slope = 1.006 * 0.004 o LTosq

—— Fitting line
slope = 1.044 + 0.004
r?=0.95

25N X

10_3- .-" . e s
B . ..-
o H
1044 = T T v T
10 103 1072 101
Average

Excelsior

Chamise-uncontaminated

9. Excelsior

101 - | = Fitting line
slope =1.012 + 0.007
J|rr=085
. 0A
. A
102 ALk
. nt e -
- L
— - ‘.‘
3 . g . :
103 o Sy
4 ™ i".. .'_
ST
10— T T T T
104 103 102 101
Average

12. Chamise-uncontaminated

101 ~——— Fitting line |2:1' 1:1
slope = 1.024 + 0.004
=093 Y4 [05:1
102

CH;NO,H* . -
_| (m/z 62.0237) .+
-

103 -

10~ T T T v T
104 103 10?2 101
Average



13. Manzanita-contaminated 14. Manzanita-uncontaminated 15. Sage

1:1
101 - |~ Fitting line 101 | — Fitting line 101 -{| — Fitting line El [ 1:1]

= + = + = + Ao
- slope = 1.034 + 0.004 T slope = 1.043 + 0.005 slope = 1.011  0.004 ) [os:1]
a - r=0.92 r=0.93 _
- — 1] - R
o =
£ £
© 102 2 102
£ S g
g € - ]
IC) 3 n
= S
& 10° ' 103~
N (L]
c N
g 5

=
10425 . v ' ; , 104 ; r . . v . 10 - . T " . v .
104 103 102 101 10+ 103 102 101 10 103 102 101
Average Average Average

Figure S4. Continued.



Variability in VOC composition relative to
normalized fractions of high- and low-temperature pyrolysis factor
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Linear fit of CO,, NO,, and CO emissions by
high- and low-temperature pyrolysis factors
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Figure S6. Linear fits of (a) CO,, (b) NO,, and (c) CO emissions (in ppmv) by the high- and
low-temperature pyrolysis time series (in ncps) for Fire #37 (Ponderosa pine realistic
mixture). Each plot shows the stacked contributions of the high- and low-temperature
factors (shaded area), compared to the measured mixing ratios (solid line). The best-fit

equation and correlation coefficient are also provided.



Burns of Ponderosa pine rotten wood
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High-temp./low-temp. ratio vs. Temperature
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Figure S8. The comparison of contribution of high-temperature factor versus air
temperature of the emissions measured at the sampling inlet of the PTR-ToF-MS. (a) Time
series of Fire #37 (Ponderosa pine realistic mixture). (b)-(d) Scatter plots of instantaneous
high-temperature contribution versus temperature for Fire #37, #59 (Ponderosa pine

realistic mixture), and #38 (Ponderosa pine litter).



High-temp./low-temp. ratio vs. Ethyne/furan ratio
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Figure S9. The comparison of contribution of high-temperature factor versus ethyne/furan
ratio. (a) Time series of Fire #37 (Ponderosa pine realistic mixture). (b) Scatter plot of
instantaneous high-temperature contribution versus ethyne/furan ratio for all Ponderosa
pine fires. (c¢) Scatter plot of fire-integrated high-temperature contribution versus
ethyne/furan ratio for all fires. Contribution of high-temperature factor was calculated by

2ZVOChigh-T/(RVOChigh-t + ZVOCow.1) instantaneously or on a fire-integrated basis.
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Ethyne/furan ratio was calculated by instantaneously or on a fire-

integrated basis. Coefficients 4 and B correspond to 0.0393 (in ppbv/total VOC ppbv) for
ethyne in the high-temperature factor and 0.0159 (in ppbv/total VOC ppbv) for furan in

the low-temperature factor, respectively.



Calculated vs. measured VOC emission from biomass burning
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Figure S10. Scatter plots of calculated versus measured emissions for three literature data.
Calculate emissions were obtained by fitting the VOC emission profiles (Figure 3).
Laboratory study reported by Gilman et al. (2015) used fuels from southwestern,
southeastern, and northern U.S. (e.g., pine, spruce, fir, chaparral, mesquite, and oak),
while in the case of Stockwell et al. (2015), several types of grass, spruce, and chaparral

were used.



S1. Preparation of datasets for PMF analysis
S1.1. Ion signal datasets

Ion signal datasets for PMF analysis were prepared using five steps. (i) 2 Hz time series data
were averaged to 1 Hz. (ii) Background was subtracted from each ion signal before application
of PMF, to avoid having PMF return a factor that describes the background. Background was
determined from a 30-second to 5-minute measurement of combustion chamber air immediately
prior to the fire. (iii) Points where instrument signal was negative or less than 0.01 were replaced
with 0.01, which is based on the lowest limit of ion signal (ncps) of the PTR-ToF-MS. (iv) Data
were restricted to the time period of active fire emissions, defined by the first enhancement of
benzene above background (start) to when the PTR-ToF-CIMS stopped sampling (end). (v) The
resulting time series for all fires of a particular fuel type (e.g., Ponderosa pine) were

concatenated into a single data matrix.

S1.2. Uncertainty datasets
PMF also requires an estimate of measurement uncertainty of ion signals at each time point

for each ion mass (m/z). The uncertainties (0,.) were estimated as o,,/, (ncps) = 2.0 X

\/ Nin/zw/o B (NCPS), Where Ny wio Bg s background-subtracted ion signal. The derivation is
described below.

The uncertainty used in the present work is in units of “normalized counts-per-second
(ncps)”. The ncps uncertainty should have the same value relative to the ncps signal, as the
uncertainty of the raw ion signal in units of counts-per-second (cps) relative to the cps signal.
The raw ion signal (cps) is without normalization by the H3O" ion intensities and correction for
the ToF-duty cycle. The present uncertainty value (0,,:) for a given m/z ion signal (N,,.) can be

calculated as follows:
Om/z (Ncps) = A X [Ny, (ncps) X t (S1-a)

106 M/Zreference
A= X X 1-
m/z j Tnsor ) N mjz (51-6)




A is a scaling factor of \/ Ny, /,. o 18 a coefficient relative to the Poisson (counting) statistics

(6 = VN) that accounts for additional noise to the ion signals of the masses due to the high-
resolution peak fitting of the ToF mass spectra (Cubison et al., 2015; Corbin et al., 2015; Yuan et
al., 2016). 30+ is the raw intensity of the H;O" reagent ion, #/Zeference i an arbitrary reference

mass (in this work, 7/Zieference = 55), and ¢ the sampling time (in this case, # = 1 s). The factors

m/z . . ..
10%/I30+ and \/ [Zreference are to undo normalization by the H;O" ion intensities and

m/z
correction for the ToF-duty cycle, respectively.

Here we estimated a scaling factor a,,. in Eq. (S1) suitable for the present instrumentation.
Figure S1.1 shows standard deviations of the background signals (in units of cps) versus the
background signals themselves from the individual zeroing periods for the 574 ion species listed
in Table S2 during one burn (Fire #02). Most of data points are observed in the region between
VN and 3 x VN, suggesting that high-resolution peak fitting in this work can increase the errors
in the ion signals by as much as a factor of 3 for the ion peaks. Figure S1.2 shows the empirically
determined coefficient a,. (i.e., the ratio of standard deviation to vN) and scaling factor 4 (Eq.
S1-b) for each m/z ion. It is seen that both the factors can be approximated as a constant (1.2 +
0.4 and 0.6 + 0.2, respectively), across a wide range of m/z. Accordingly, the empirical
determined scaling factor 4 in Eq. (S1) can be approximated as 0.6, independent of the m/z value.

Based on the results described above, we first performed PMF using datasets of ion signals
with backgrounds and uncertainties calculated from the empirical determined scaling factor 4 =
0.6 for single burn data (Fire #02, Ponderosa pine realistic mixture). The resulting 3-factor
solution returned the high-temperature and low-temperature pyrolysis mass spectral and time
series profiles as well as background profiles, but O/Q., value was quite high (9.69 with fPeak
and seed of zero). “Q” is a fit parameter of the PMF algorithm and is expressed by summation of
squared scaled residuals for each experimental data points, i.e., O = Z(Resid/0)* (Paatero, 1997;
Ulbrich et al., 2009). Scaled residual (Resid/0) at a certain data point is calculated as the ratio of
residual (Resid) not fit by the PMF to uncertainty (o) at that point. “Qe,”, expected O, is
associated with abs Resid/o ~ 1. The value of O/Qcp >> 1 indicates underestimation of the
uncertainties (Ulbrich et al., 2009). Thus, we performed several tests to see how sensitive the
PMF results are to the uncertainty estimate, by setting 4 = 1.0, 1.5, 2.0, 2.5, and 3.0 and applying

PMF. The profiles of the 3-factor solutions for individual uncertainty datasets were nearly



identical to the case of 4 = 0.6 (correlation coefficient > 0.99 as shown in Figure S1.3). Some
small differences were seen in the quality of fit for ions with average enhancements of less than
10 ncps (corresponding to approximately 130 pptv and << 1% of total signal). These differences
do not affect any of our conclusions. Interestingly, the O/Qcx, value decreased with increasing
the number of 4: O/Qcyp = 4.95, 2.65, 1.64, 1.12, and 0.78 for 4 = 1.0, 1.5, 2.0, 2.5, and 3.0,
respectively (fPeak = seeds = 0, discussed in next section). Taking into account the O/Qcy, value
and the quality of fit, we decided 4 = 2.0 as the best number here.

Furthermore, we investigated changes to the PMF solution when using (i) the background-
subtracted ion signals and (ii) concatenated burn data. If backgrounds are subtracted, or burns
concatenated, the PMF results are quite similar to the base case obtained from the ion signals
with backgrounds, 4 = 0.6, and single burn data (correlation coefficient » > 0.97 as shown in

Figure S1.4). Consequently, the uncertainty datasets for concatenated burn data were prepared

O-m/z (TleS) = 2.0 X \/Nm/z,w/o BG (TleS).

S1.3. Effect of rotational ambiguity (fPeak) and starting points (seeds) on PMF results
A subset of the rotational freedom of the 2-factor PMF solutions was explored by varying
the fPeak values from -1.0 to +1.0, for the concatenated burn datasets consisting of the

background-subtracted ion signals N,.w. sc (ncps), and the uncertainty o/, (ncps) =

2.0 X \/ Nin/zw /o B (ncps). In this study, solutions obtained from nonzero fPeak values (fPeak #

0) were generally consistent with those from zero fPeak value (fPeak = 0). The resulting Q/Qcxp
are almost constant (3.0292 + 0.0003, as shown in Figure S1.5a). This means that the results
shown in this work are associated to no rotation in the PMF analysis. In contrast, different
random starting points (seeds = 0 — 10) were tried to find the local minimum of QO/Qcy, in the 2-
factor PMF solutions (Paatero, 1997). The local minimum was obtained at seeds = 0 (Figure
S1.5b). Therefore, the discussion in Section 3 in the main text is based on the 2-factor PMF

solutions at fPeak = seeds = 0.

S2. Relationship of ethyne:furan ratio to high:low temperature ratio

Trace gases can be used to estimate the emissions from the high-/low-temperature factors.
Here we propose ethyne (C,H») and furan (C4H40) as tracers. Normalized fractions of the high-
/low-temperature factors are 72%/28% for ethyne and 33%/67% for furan. These two



compounds have large emissions and low standard deviations in the average emission profiles of
15 different fuels (0.0393 + 23% ppbv/total VOC ppbv for ethyne in the high-temperature factor
and 0.0159 £ 19% ppbv/total VOC ppbv for furan in the low-temperature factor). This reduces to

a ratio of approximately:

total VOC ,high temperature (ppbv) __ ethyne (ppbv)/0.0393 (82)

total VOC ,low temperature (ppbv) furan (ppbv)/0.0159

Average relative error (%) of the ethyne/furan ratio to the total VOCyjgh-1/total VOCrow-1 18 50%,

except for rotten wood.
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Figure S1.1. Scatterplot of the standard deviations of background signals versus the
measured background signals from Fire #02 for 574 ion peaks which were used for PMF

analysis. In this graph, the signals are not corrected for the H;O" ion intensities and the

ToF duty cycle. The two dashed lines are VN and 3 X N, respectively.
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Dependence of uncertainty datasets (scaling factor A) on PMF results
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Figure S1.3. Dependence of uncertainty datasets, scaling factor 4 in Eq. (S1), on PMF
results (mass spectra and time series for high- and low-temperature pyrolysis factors at
fPeak = seeds = 0). The PMF results obtained from scaling factor 4 = 1.0, 1.5, 2.0, 2.5, and
3.0 are compared with the results from 4 = 0.6. Single fire data (Fire #02, Ponderosa pine
realistic mixture) and ion signals with backgrounds are used. “s” and “r” in each panel

represent the slope and correlation coefficient for the linear line of the best fit, respectively.



Dependence of ion signal and uncertainty datasets on PMF results
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Figure S1.4. Dependence of ion signal and uncertainty datasets on PMF results (mass
spectra and time series for high- and low-temperature pyrolysis factors at fPeak = seeds =
0). The PMF results obtained from concatenated burn data (10 Ponderosa pine burn data),
background-subtracted ion signals, and the scaling factor A = 2.0 in Eq. (S1) are compared
with the results from single burn data (Fire #02, Ponderosa pine realistic mixture), ion

signals with backgrounds, and 4 = 0.6.



Dependence of rotational ambiguity (fPeak) and starting point (seeds) on Q/Q,,,
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Figure S1.5. Dependence of rotational ambiguity (fPeak) and starting point (seeds) on

0/Qexp for the 2-factor PMF solutions of the concatenated Ponderosa pine burn datasets.

These datasets consist of the background-subtracted ion signals N, ;.0 e (ncps), and the

uncertainty 6., /, (ncps) = 2.0 X \/Np54/0 g6 (NCPS).



