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Abstract. Anthropogenic methane emissions originate from
a large number of fine-scale and often transient point sources.
Satellite observations of atmospheric methane columns are
an attractive approach for monitoring these emissions but
have limitations from instrument precision, pixel resolution,
and measurement frequency. Dense observations will soon
be available in both low-Earth and geostationary orbits, but
the extent to which they can provide fine-scale information
on methane sources has yet to be explored. Here we present
an observation system simulation experiment (OSSE) to as-
sess the capabilities of different satellite observing system
configurations. We conduct a 1-week WRF-STILT simula-
tion to generate methane column footprints at 1.3× 1.3 km2

spatial resolution and hourly temporal resolution over a
290× 235 km2 domain in the Barnett Shale, a major oil and
gas field in Texas with a large number of point sources. We
sub-sample these footprints to match the observing char-
acteristics of the recently launched TROPOMI instrument
(7× 7 km2 pixels, 11 ppb precision, daily frequency), the
planned GeoCARB instrument (2.7× 3.0 km2 pixels, 4 ppb
precision, nominal twice-daily frequency), and other pro-
posed observing configurations. The information content of
the various observing systems is evaluated using the Fisher
information matrix and its eigenvalues. We find that a week
of TROPOMI observations should provide information on
temporally invariant emissions at ∼ 30 km spatial resolution.
GeoCARB should provide information available on tempo-
rally invariant emissions∼ 2–7 km spatial resolution depend-
ing on sampling frequency (hourly to daily). Improvements

to the instrument precision yield greater increases in informa-
tion content than improved sampling frequency. A precision
better than 6 ppb is critical for GeoCARB to achieve fine res-
olution of emissions. Transient emissions would be missed
with either TROPOMI or GeoCARB. An aspirational high-
resolution geostationary instrument with 1.3× 1.3 km2 pixel
resolution, hourly return time, and 1 ppb precision would ef-
fectively constrain the temporally invariant emissions in the
Barnett Shale at the kilometer scale and provide some infor-
mation on hourly variability of sources.

1 Introduction

Methane is a greenhouse gas emitted by a range of natural
and anthropogenic sources (Kirschke et al., 2013; Saunois
et al., 2016; Turner et al., 2017). Anthropogenic methane
emissions are difficult to quantify because they tend to orig-
inate from a large number of potentially transient point
sources such as livestock operations, oil or gas leaks, land-
fills, and coal mine ventilation. Atmospheric methane obser-
vations from surface and aircraft have been used to quantify
emissions (e.g., Miller et al., 2013; Caulton et al., 2014; Kar-
ion et al., 2013, 2015; Lavoie et al., 2015; Conley et al., 2016;
Peischl et al., 2015, 2016; Houweling et al., 2016) but are
limited in spatial and temporal coverage. Satellite measure-
ments have dense and continuous coverage but limitations
from observational errors and pixel resolution need to be un-
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derstood. Here we perform an observing system simulation
experiment (OSSE) to investigate the information content of
different configurations of satellite instruments for observing
fine-scale and transient methane sources, taking as a test case
the oil and gas production sector.

Low-Earth orbit satellite observations of methane by
solar backscatter in the shortwave infrared (SWIR) have
been available since 2003 from the SCIAMACHY instru-
ment (2003–2012; Frankenberg et al., 2005) and from
the GOSAT instrument (2009–present; Kuze et al., 2009,
2016). SWIR instruments measure the atmospheric column
of methane with near-unit sensitivity throughout the tropo-
sphere. SCIAMACHY and GOSAT demonstrated the capa-
bility for high-precision (< 1 %) measurements of methane
from space (Buchwitz et al., 2015), but SCIAMACHY had
coarse pixels (30× 60 km2 in nadir) and GOSAT has sparse
coverage (10 km diameter pixels separated by 250 km). In-
verse analyses have used observations from these satellite-
based instruments to estimate methane emissions at ∼ 100–
1000 km spatial resolution (e.g., Bergamaschi et al., 2009,
2013; Fraser et al., 2013; Monteil et al., 2013; Wecht et al.,
2014a; Cressot et al., 2014; Kort et al., 2014; Turner et al.,
2015; Turner et al., 2016a; Alexe et al., 2015; Tan et al.,
2016; Buchwitz et al., 2017; Sheng et al., 2018a, b). But
such coarse resolution makes it difficult to resolve individual
source types because of spatial overlap (Maasakkers et al.,
2016).

Improved observations of methane from space are ex-
pected in the near future (Jacob et al., 2016). The TROPOMI
instrument (Veefkind et al., 2012; Butz et al., 2012; Hu et al.,
2016, 2018), launched in October 2017, will provide global
mapping at 7× 7 km2 nadir resolution once per day. The
GeoCARB geostationary instrument (Polonsky et al., 2014;
O’Brien et al., 2016) will be launched in the early 2020s
with current design values of 3× 3 km2 pixel resolution and
twice-daily return time. Additional instruments are presently
in the proposal stage with improved combinations of pixel
resolution, return time, and instrument precision (Fishman
et al., 2012; Butz et al., 2015; Xi et al., 2015).

An OSSE simulates the atmosphere as it would be ob-
served by an instrument with a given observing configura-
tion and error specification. Several OSSEs have been con-
ducted to evaluate the potential of satellite observations to
quantify methane sources, but they have been conducted at
either coarse (∼ 50× 50 km2) spatial resolution (Wecht et al.,
2014b; Bousserez et al., 2016) or assumed idealized flow
conditions (Bovensmann et al., 2010; Rayner et al., 2014).
Here we use a 1-week simulation of atmospheric methane
with 1.3× 1.3 km2 resolution over a 290× 235 km2 domain
to simulate continuous and transient emissions in the Barnett
Shale region of Texas, and from there we quantify the ca-
pability of different satellite instrument configurations to re-
solve and quantify these sources at the kilometer and hourly
scales. Our choice of scales is guided by the resolution of the
planned satellite observations, and our choice of the Barnett

Shale is guided by the availability of a high-resolution emis-
sion inventory for the region (Lyon et al., 2015). The pattern
and density of methane emissions in the Barnett Shale is typ-
ical of other source regions in the US (Maasakkers et al.,
2016).

2 High-resolution OSSE environment

We simulate atmospheric methane concentrations over the
Barnett Shale in Texas at 1.3× 1.3 km2 horizontal resolution
for the period of 19–25 October 2013 using a framework
similar to that of Turner et al. (2016b). The simulation
uses version 3.5 of the Weather Research and Forecasting
(WRF) model (Skamarock et al., 2008) over a succession
of nested domains (left panel in Fig. 1) with 1.3× 1.3 km2

spatial resolution in the innermost domain covering
290× 235 km2. There are 50 vertical layers up to 100 hPa.
Boundary-layer physics are represented with the Mellor–
Yamada–Janjíc scheme and the land surface is represented
with the five-layer slab model (Skamarock et al., 2008).
The simulation is initialized with assimilated meteorological
observations from the North American Regional Reanal-
ysis (https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/north-american-regional-reanalysis-narr,
last access: 4 May 2018). Overlapping 30 h forecasts were
initialized every 24 h at 00:00 UTC and the first 6 h of each
forecast were discarded to allow for model spinup. Grid
nudging was used in the outermost domain.

WRF meteorology is used to drive the Stochastic Time-
Inverted Lagrangian Transport (STILT) model (Lin et al.,
2003). STILT is a Lagrangian particle dispersion model. It
advects an ensemble of particles backward in time from se-
lected receptor locations, using the archived hourly WRF
wind fields and boundary-layer heights. STILT calculates the
footprint for the receptors; a spatiotemporal map of the sen-
sitivity of observations to emissions contributing to the con-
centration at each selected receptor location and time. We use
STILT to calculate 10-day footprints for hourly column con-
centrations at 1.3× 1.3 km2 resolution over a 70× 70 km2

domain in the innermost WRF nest, tracking the result-
ing footprints over a 290× 235 km2 domain (right panel in
Fig. 1). With this system we examine the constraints on
emissions over the 290× 235 km2 domain provided by dense
SWIR satellite observations (over the 70× 70 km2 domain)
that have up to 1.3 km pixel resolution and hourly daytime
frequency. Footprints for each column are obtained by re-
leasing 100 STILT particles from vertical levels centered at
28, 97, 190, and 300 m above the surface and 8 additional
levels up to 14 km altitude spaced evenly on a pressure grid.
The column footprints are then constructed by summing the
pressure-weighted contributions from individual levels, us-
ing a typical SWIR averaging kernel taken from Worden et al.
(2015) with near-uniformity in the troposphere and correct-
ing for water vapor (see Appendix A in O’Dell et al., 2012).
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Figure 1. High-resolution OSSE domain. Left panel shows the successive nested WRF domains at 36, 12, 4, and 1.3 km spatial resolutions,
with the coarser domains providing initial and boundary conditions for the finer domains. Black shaded region is the Barnett Shale region in
Texas. Right panel shows the domain for the OSSE. Green box is the innermost 1.3 km WRF domain, dashed orange box is the observation
domain, and solid orange box is the domain over which the footprints are computed. Light blue lines indicate the counties in the Barnett
Shale.

The footprint for the ith receptor location and time can be
expressed as a vector hi = (∂yi/∂x)T describing the sensi-
tivity of the column concentration y at that receptor location
and time to the emission fluxes x over the 290× 235 km2

domain and previous times extending up to 10 days. Here x
is arranged as a vector of length n assembling all the emis-
sion grid cells and hours, allowing the emissions to vary
on an hourly basis. The column concentration is expressed
as the dry air column-average mixing ratio (ppb) follow-
ing common practice (Jacob et al., 2016). The emissions x
have units of nmol m−2 s−1, so that the footprint has units
of ppb nmol−1 m2 s. The column concentration for the ith ob-
servation (yi) can be reconstructed from its footprint as

yi = hix+ bi, (1)

where bi is the background column concentration upwind of
the 290× 235 km2 domain. We can then write the full set of
observations as a vector y of length m and reshape the set of
m footprint vectors h into anm×n sparse matrix H= ∂y/∂x
(where m is the number of observations and n is the number
of state vector elements):

y =Hx+ b, (2)

where b is the background vector with elements bi and H
is the Jacobian matrix that maps emissions to concentration
enhancements due to emissions within our domain.

Figure 2 shows the sum of all column footprints produced
on individual days for the 70× 70 km2 observation domain.
Computing these high-resolution footprints was a non-trivial
computational task and ultimately yielded more than 4 Tb of
footprints for the week of pseudo-satellite observations in the
Barnett Shale. The footprints show large variability from day
to day over the course of the week, reflecting meteorological
variability. For example, winds are from the north on 19 Oc-
tober and from the south on 20 October. The winds are weak

on 24 October, resulting in a strong local contribution to
the footprint. Summing the footprints over the course of the
week (bottom right panel of Fig. 2), we find that the obser-
vations are mainly sensitive to the core 70× 70 km2 domain
where they are made, with a diffuse sensitivity over the outer
290× 235 km2 domain. Additional observations within the
outer domain would need to be considered to constrain emis-
sions in that domain. However, information on emissions in
the 70× 70 km2 core domain is mainly contributed by ob-
servations within the domain. Thus our focus will be to de-
termine the capability of the observations in the 70× 70 km2

domain to constrain emissions within that same domain, but
we include the outer 290× 235 km2 domain in our footprint
analysis for completeness in accounting of information. Pre-
vious work (Turner et al., 2016b, Supplement Sect. 6.1) in-
vestigated the impact of domain size on error reduction for
WRF-STILT inversions in California’s Bay Area and found
that it had a negligible impact

The footprint information can be combined with an emis-
sion inventory for the 290× 235 km2 domain to generate a
field of column concentrations over the 70× 70 km2 domain
as would be observed from satellite. For this purpose we use
the Environmental Defense Fund (EDF) inventory for the
Barnett Shale in October 2013 at 4× 4 km2 resolution com-
piled by Lyon et al. (2015). We downscale the EDF inven-
tory by uniform attribution from 4× 4 km2 to 1.3× 1.3 km2

spatial resolution. The inventory is shown in Fig. 3 and in-
cludes contributions from oil and gas production, livestock
operations, landfills, and urban emissions from the Dallas–
Fort Worth area. It provides mean monthly values with no
temporal resolution, but presumes that some sources will be-
have as sporadic large transients (Zavala-Araiza et al., 2015).
Figure 4 shows an example of the methane column enhance-
ments above background (Hx) computed at 09:00 local time
on 23 October. We find enhancements in the range of 0–
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Figure 2. Summed methane column footprints for all 1.3× 1.3 km2 grid cells in the 70× 70 km2 observation domain defined by the dashed
orange box. The footprints are calculated from 08:00 to 17:00 LT over the 290× 235 km2 domain defined by the solid orange box. Bottom
right panel shows the summed footprint for the full week.
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Figure 3. Gridded Environmental Defense Fund (EDF) methane
emission inventory for the Barnett Shale in Texas in October
2013 (Lyon et al., 2015). Spatial resolution is 4× 4 km2. White ar-
eas are outside the inventory domain.
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Figure 4. Simulated methane concentration enhancements relative
to background (1XCH4 =Hx) in the 70× 70 km2 observation do-
main of the Barnett Shale (dashed orange box), as derived from the
downscaled EDF methane inventory (x) and the WRF-STILT foot-
prints (H) within the 290× 235 km2 OSSE domain (solid orange
box). Values are for 23 October at 09:00 LT. Zeros are due to miss-
ing data because of unfinished computations.
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Table 1. Satellite observing systems considered in this work.

Instrument
Observation Pixel resolution Precision
Frequencya (km2) (ppb)

Hi-resb hourly 1.3× 1.3 1.0
GeoCARB (hourly) hourly 2.7× 3.0 4.0
GeoCARB twice daily 2.7× 3.0 4.0
GeoCARB (daily) daily 2.7× 3.0 4.0
TROPOMI daily 7.0× 7.0 10.8

a Hourly observations are 10 times per day at 08:00–17:00 LT, twice-daily observations
are at 10:00 and 14:00 LT, and daily observations are at 13:00 LT.
b Aspirational instrument with the highest observation frequency and pixel resolution that
can be simulated within our OSSE framework.

10 ppb due to emissions within the 290× 235 km2 OSSE
footprint domain. In what follows we will examine the po-
tential of different satellite observing systems to detect these
enhancements relative to the background and interpret them
in terms of local sources.

3 Information content of different satellite observing
systems

We aim to determine the information content from differ-
ent satellite-based observing systems regarding the spatial
and temporal distribution of emissions in the Barnett Shale.
We consider both steady and potentially transient emissions
with five different satellite observing configurations (Ta-
ble 1). TROPOMI (global daily mapping, 7× 7 km2 nadir
pixel resolution, 11 ppb precision; Veefkind et al., 2012) was
launched in October 2017 and is expected to provide an op-
erational data stream by the end of 2018. GeoCARB (geo-
stationary, 2.7× 3.0 km2 pixel resolution, 4 ppb precision;
O’Brien et al., 2016) is planned for launch in the early
2020s and its observation schedule is still under discussion
with a tentative design for observations twice daily; here
we examine different return frequencies of hourly, twice
daily, and daily. Finally, the hypothetical “hi-res” config-
uration assumes geostationary hourly observations at the
1.3× 1.3 km2 pixel resolution of our WRF simulation and
with 1 ppb precision; it represents an aspirational system
that combines the frequent return time, fine pixel resolution,
and high precision of instruments presently at the proposal
stage (Bovensmann et al., 2010; Fishman et al., 2012; Xi
et al., 2015). All configurations are filtered for cloudy scenes.

The various satellite observing configurations of Table 1
differ in their return frequency, pixel resolution, and in-
strument precision. The benefit of improving any of these
attributes may be limited by error in the forward model
used in the inverse analysis (i.e., the Jacobian matrix H)
and by spatial or temporal correlation of the errors. These
limitations are described by the model–data mismatch error
covariance matrix (R) including summed contributions
from the instrument, forward model, and representation
errors (Turner and Jacob, 2015; Brasseur and Jacob, 2017).

Representation errors are negligible here because the instru-
ment pixels are commensurate or coarser than the model
grid resolution. Instrument error (i.e., precision) is listed in
Table 1. Forward model error is estimated by computing
STILT footprints for a subset of the meteorological period
using the Global Data Assimilation System (GDAS;
https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/global-data-assimilation-system-gdas,
last access: 4 May 2018) applying the two sets of footprints
to either the EDF methane inventory (Fig. 3; Lyon et al.,
2015) or the gridded EPA inventory (Maasakkers et al.,
2016), and computing semivariograms of differences in col-
umn concentrations. From this we obtain a forward model
error standard deviation of 4 ppb with an error correlation
length scale of 40 km. We assume a temporal model error
correlation length of 2 h. Sheng et al. (2018b) previously
derived a temporal model error correlation length of 5 h
in simulation of TCCON methane column observations at
25 km resolution, and we expect our correlation length to be
shorter because of the finer resolution.

Bayesian inference is commonly used when estimating
methane emissions with atmospheric observations, allowing
for errors in the observations and in the prior estimates:

P(x|y)∝ P(y|x)P (x), (3)

where P(x|y) is the posterior probability density function
(pdf) of the state vector (x) given the observations (y),
P(y|x) is the conditional pdf of y given x, and P(x) is the
prior pdf of x. A common assumption is that P(y|x) and
P(x) are normally distributed which allows us to write the
posterior pdf as

P(x|y)∝exp
{
−

1
2
(y−Hx)TR−1 (y−Hx) (4)

−
1
2
(x− xa)

TB−1 (x− xa)

}
,

where B is the n× n prior error covariance matrix and xa is
the n× 1 vector of prior fluxes. The most probable solution
is obtained by minimizing the cost function:

J (x)=
1
2
(y−Hx)TR−1 (y−Hx) (5)

+
1
2
(x− xa)

TB−1 (x− xa) ,

yielding the posterior estimate (x̂):

x̂ = xa +
(

HTR−1H+B−1
)−1

︸ ︷︷ ︸
posterior error covariance matrix

HTR−1 (y−Hx) (6)

with an n× n posterior error covariance matrix:

Q= (HTR−1H︸ ︷︷ ︸
observations

+ B−1︸︷︷︸
prior

)−1 (7)
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that characterizes the uncertainty in the solution. The first
term in the posterior covariance matrix is known as the
Fisher information matrix: F =HTR−1H (see, for example,
Rodgers, 2000; Tarantola, 2004).

Comparison between F and B−1 identifies the extent
to which the observations reduce the uncertainty in the
fluxes. Specifically, the number of pieces of information on
emissions acquired to better than measurement error is the
number of eigenvalues of B1/2FB1/2 that are greater than
unity (Rodgers, 2000). As such, the Fisher information ma-
trix and prior error covariance matrix can quantify the effec-
tive rank of the observing system.

A drawback with this formulation of the information con-
tent is that it relies on the assumption of a Gaussian prior pdf.
A number of papers have suggested that the pdf of methane
emissions from a given source may be skewed, with a “fat
tail” of transient high emissions (e.g., Brandt et al., 2014;
Zavala-Araiza et al., 2015; Frankenberg et al., 2016). Al-
ternate formulations for the cost function to be minimized
may include no prior information (least-squares regression),
a prior constraint that promotes a sparse solution (e.g., Can-
des and Wakin, 2008), a prior constraint based on frequen-
tist regularization approaches (such as LASSO regression
or Tikhonov regularization), or a prior constraint based on
the spatial patterns of emissions rather than their magnitudes
(geostatistical inversion). Table 2 lists the corresponding for-
mulations. From Table 2 we see that the observation term is
the same in all cases. Thus the Fisher information matrix pro-
vides a general measure of the information content provided
by an observing system, independent of the form of the prior
constraint, and we use it in what follows as a measure of the
information content.

The Fisher information matrix is an n× n matrix. Each of
its n eigenvectors represent an independent normalized emis-
sion flux pattern and the corresponding eigenvalues are the
inverses of the error variances associated with that pattern. A
more useful way of stating this is that the inverse square root
of the ith eigenvalue of F represents the flux threshold fi
needed for the observations to be able to constrain the emis-
sion flux pattern represented by the ith eigenvector. Whether
that flux threshold is useful depends on the magnitude of the
emissions, and this can be assessed for the problem at hand.
Thus the eigenanalysis of the Fisher information matrix gives
us a general estimate of the capability of an observing sys-
tem to quantify emissions, which can then be applied to any
actual n× n emission field.

For a given emission field, we may expect that some of
the n emission flux patterns will be usefully constrained by
the observing system while others are not. The number of
patterns that are usefully constrained represents the number
I ≤ n pieces of information on emissions provided by the
observing system. We will equivalently refer to it as the rank
of the Fisher information matrix. This is determined by com-
paring the eigenvalues of an emission inventory (ei) to the
flux thresholds. The number of ei larger than the correspond-

ing fi provides a cut-off to estimate I:

I =
∑
i

{
1, ei > fi
0, ei ≤ fi

(8)

In the case of Bayesian inference, this is roughly equivalent
to the degrees of freedom for signal with a diagonal prior
error covariance matrix and a relative uncertainty of 100 %.
But the eigenanalysis of the Fisher information matrix pro-
vides a more general approach of the capability of an observ-
ing system that can be confronted to any prior constraint and
allows intercomparison of different observing system config-
urations.

There is an inconsistency in this formulation of I: F and
B−1 have different eigenspaces. In this work we have chosen
to treat these matrices separately because, in practice, it is
computationally infeasible to directly compute the eigenval-
ues of the matrix product if n is large, as in the case here of
constraining hourly emissions of the spatially distributed in-
ventory. This inconsistency results in our estimate of I likely
being an upper bound on the information content (see Ap-
pendix for details).

4 Comparing different satellite configurations

The eigenanalysis of Sect. 3 allows us to intercompare the
value of different satellite configurations for resolving the
fine-scale patterns of methane emissions within a given do-
main. Here we apply it to the Barnett Shale domain of Sect. 2.
We consider two limiting cases: Case 1 assumes the emis-
sions to be temporally invariant and Case 2 assumes the emis-
sions to vary hourly with no temporal correlation. In Case 1
the problem is typically overdetermined (m> n), depending
on the satellite configuration, and the maximum rank of F is
n (the number of emission grid cells). In Case 2 the problem
is underdetermined (m < n) and the maximum rank of F is
m (the number of observations).

In both Case 1 and 2, the observations only provide use-
ful information (as defined by Eq. 8) if the signal is larger
than the noise, as diagnosed by the ei > fi criterion of
Eq. 8. Here the emissions are the downscaled EDF inventory,
which includes 40 140 grid cells in the 290× 235 km2 inver-
sion domain (n= 40 140 in Case 1 with temporally invari-
ant emissions) but only 2 601 of those grid cells are within
the 70× 70 km2 observation domain (dashed orange box in
Fig. 1), where we might expect the observations to provide
the strongest constraints. In Case 2 with temporally variable
emissions we have n= 40140× 24= 963360 grid cells for
a single day.

Figure 5 shows the ensemble of flux thresholds for the
five satellite configurations, assuming temporally invariant
emissions. The ranked flux patterns are on the abscissa; lead-
ing flux patterns correspond to larger patterns of variability
(e.g., regional-scale emissions), and the trailing flux patterns
correspond to fine-scale variability. The corresponding flux

Atmos. Chem. Phys., 18, 8265–8278, 2018 www.atmos-chem-phys.net/18/8265/2018/
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Table 2. Cost functions for different formulations of the inverse problema.

Method Cost function

Least-squares regression (y−Hx)T R−1 (y−Hx)
LASSO regression (y−Hx)T R−1 (y−Hx)+ γ

∑
i |xi |

Tikhonov regularization (y−Hx)T R−1 (y−Hx)+ γxT x
Bayesian inference, Gaussian (y−Hx)T R−1 (y−Hx)+ (x− xa)T B−1 (x− xa)

Geostatistical inverse model (y−Hx)T R−1 (y−Hx)+ (x−Gβ)T B−1 (x−Gβ)
a γ is the regularization parameter for LASSO regression and Tikhonov regularization. G is a matrix with columns
corresponding to different spatial datasets and β is a vector of drift coefficients for the spatial datasets. Other
variables defined in the text.
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Figure 5. Capability of different configurations for satellite obser-
vations of atmospheric methane (Table 1) to resolve the fine-scale
(1.3× 1.3 km2) patterns of variability of temporally invariant emis-
sions in a 290× 235 km2 domain and for a 1-week observation pe-
riod. The colored lines show the flux thresholds for the different
emission patterns of variability in the domain, as given by the or-
dered inverse square roots of the eigenvalues of the Fisher informa-
tion matrix. Solid black line is the eigenvalues of the emissions from
the EDF Barnett Shale methane inventory (Lyon et al., 2015) and the
solid gray line is the gridded EPA inventory. The region above the
black line is where the noise is larger than the signal. Filled circles
indicate the information content of the observing system (I) for a
given satellite configuration at 1.3× 1.3 km2 spatial resolution. In-
set table lists the information contents for the five configurations.

thresholds are on the ordinate. The flux threshold is low-
est for the leading flux patterns and largest for the trailing
flux patterns. This means that the regional-scale emissions
are easiest to quantify and the finer-scale emissions are in-
creasingly difficult to quantify. The information content (I)
is obtained from the intersection of the flux thresholds (col-
ored lines) with the eigenvalues from the emission inventory
(black line). A higher information content means that finer
scales of emission variability can be detected.

From Fig. 5, we see that a week of TROPOMI observa-
tions provides five pieces of information on emissions for
the 70× 70 km2 core domain out of a possible 2601 pieces
of information describing the emissions on the 1.3× 1.3 km2

grid. The actual pieces of information are the eigenvectors of
the Fisher information matrix, and the ranked eigenvectors
describe gradually finer patterns of variability from 70× 70
to 1.3× 1.3 km2. The kth ranked eigenvector may be assumed
to describe an emission pattern of dimension 70/

√
k, imply-

ing that TROPOMI can resolve emissions on a 30 km scale.
The three GeoCARB configurations provide 98–961

pieces of information dependent on whether the observations
are daily, twice daily, or hourly. Following the above as-
sumption, this corresponds to resolving emissions on a ∼ 2–
7 km scale. Hourly observations provide 10 times more infor-
mation (as defined by Eq. 8) on emission patterns than daily
observations, and 3 times more than twice-daily observations
(the default configuration of GeoCARB). Remarkably, more
is gained by going from daily to twice daily (factor of 3.4)
than going from twice daily to hourly (factor of 2.9) be-
cause of the temporal error correlation in the transport model.
The aspirational hi-res satellite configuration provides 2 221
pieces of information on temporally invariant sources, corre-
sponding to 85 % of the flux patterns in the 70× 70 km2 ob-
servation region, which means that much of the spatial vari-
ability in the 1.3× 1.3 km2 emissions in the Barnett Shale is
resolved.

Figure 6 further quantifies the importance of instrument
precision and return frequency for the GeoCARB pixel res-
olution of 2.7× 3.0 km2. It shows the flux thresholds for a
set of configurations where the instrument precision is varied
from 0 to 14 ppb and the return frequency is varied from 1 to
10 returns per day. We find that instrument precision is more
important than return frequency for increasing the informa-
tion content from the observations.

In Case 2 we assume that the methane sources in individ-
ual pixels vary in time on an hourly basis with no correla-
tion from one hour to the next, making the problem gener-
ally underdetermined (m< n) for all satellite configurations.
Here we aim to determine the ability of the satellite obser-
vations to quantify the hourly emissions over the spatial pat-
terns defined by the eigenvectors of F and making no as-
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Figure 6. Capability of GeoCARB-like satellite configurations to resolve the fine-scale (1.3× 1.3 km2) patterns of variability of temporally
invariant emissions in a 290× 235 km2 domain and for a 1-week observation period. Left panel shows the results for a configuration with
10 returns per day (hourly observations) where the instrument precision is varied from 0 to 14 ppb. Right panel shows the results for a
configuration with 4 ppb instrument precision and the return frequency per day is varied from 1 to 10. Solid black line shows eigenvalues of
the EDF Barnett Shale methane emission inventory (Lyon et al., 2015). The region above the black line is where the noise is larger than the
signal. The change in flux threshold as the sampling frequency increases in right panel is not necessarily monotonic, because some of the
cases use different subsets of observation (e.g., daily observations are at 13:00 LT while twice daily are at 10 and 14).
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Figure 7. Same as Fig. 5 but for temporally variable sources on
21 October 2013.

sumption as to the persistence of those emissions. We treat
each day independently and compute the eigenvalues of the
Fisher information matrix for each day. Figure 7 shows the
flux thresholds for the five satellite configurations on a repre-
sentative day. From Fig. 7, we see that TROPOMI is unable
to provide any information on hourly emissions in the Bar-
nett Shale. The three GeoCARB configurations provide 2–54
pieces of information. Figure 8 evaluates the impact of sam-

pling frequency and instrument precision for the GeoCARB
configurations. As with the temporally invariant case, we find
that instrument precision is more important for increasing the
information content. The aspirational “hi-res” configuration
(shown in Fig. 7) is the only configuration that is able to pro-
vide substantial information (458 pieces of information) on
temporally variable emissions.

Figure 9 summarizes the findings from Figs. 6 and 8. It
compares the information content I from configurations with
2.7× 3.0 km2 spatial resolution (GeoCARB) as the instru-
ment precision and return frequency are varied from 0 to
14 ppb and 1 to 10 returns per day, respectively, for both
temporally variable and constant sources. Uncertainty of I
is estimated by randomly sampling ei from the ensemble of
emission inventory eigenvalues and comparing to fi in Eq. 8.
For the temporally invariant sources (Case 1), we find con-
siderable increases in information content for instrument pre-
cisions better than 6 ppb (top left panel in Fig. 9) and an ap-
proximately linear relationship between information content
and return frequency (top right panel in Fig. 9). The satellite
configurations provide considerably less information for the
temporally variable sources (Case 2). We find that satellite
configurations with instrument precision worse than 6 ppb
provide no information on temporally variable sources (bot-
tom left panel in Fig. 9). As with the temporally invariant
case, we find an approximately linear relationship between
information content and return frequency (bottom right panel
in Fig. 9). From this, we conclude that a GeoCARB-like in-

Atmos. Chem. Phys., 18, 8265–8278, 2018 www.atmos-chem-phys.net/18/8265/2018/



A. J. Turner et al.: Capability of satellite observations for fine-scale sources 8273

Figure 8. Same as Fig. 6 but for temporally variable sources on 21 October 2013.

Figure 9. Information content I as a function of the instrument precision (left column) and the sampling frequency per day (right column) for
a satellite with a pixel resolution of 2.7× 3.0 km2. Top row is for Case 1 where the sources are assumed to be temporally invariant and
bottom row is for Case 2 where the sources are temporally variable. Solid black line is the median information content. A 4 ppb model error
is included; see Sect. 3. Uncertainty is from randomly sampling ei from the eigenvalues of the EDF inventory.
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strument would greatly benefit from having an instrument
precision better than 6 ppb.

5 Conclusions

We conducted an observing system simulation experiment
(OSSE) to evaluate the potential of different satellite obser-
vation systems for atmospheric methane to quantify methane
emissions at kilometer scale. This involved a 1-week WRF-
STILT simulation of atmospheric methane columns with
1.3× 1.3 km2 spatial resolution over the 290× 235 km2 Bar-
nett Shale domain to quantify the information content of dif-
ferent satellite instrument configurations for resolving the
kilometer-scale distribution of methane emissions within that
domain. We evaluated the information content of the differ-
ent satellite observing systems through an eigenanalysis of
the Fisher information matrix F , which characterizes the ca-
pability of an observing system independently of the form
of the prior information. The eigenvalues of F define the
emission flux thresholds for detection of emission patterns
down to 1.3 km in scale as defined by the eigenvectors. Here
we put these flux thresholds in context of the high-resolution
EDF emission inventory for the Barnett Shale to quantify the
information content from different satellite observing config-
urations. The same approach could be readily used for differ-
ent observation domains and different prior inventories.

We find from this analysis that the recently launched
TROPOMI satellite instrument (low-Earth orbit,
7× 7 km2 pixels, daily return time, 11 ppb precision)
should be able to constrain the mean emissions in the Bar-
nett Shale and provide some coarse-resolution information
on the distribution of temporally invariant emissions at
∼ 30 km scales. The planned GeoCARB instrument (geosta-
tionary orbit, 2.7× 3.0 km2 pixels, twice-daily return time,
4 ppb precision) will provide 50 times more information
than TROPOMI. The observing frequency of GeoCARB is
still under discussion; we find that twice-daily observations
triple the information content relative to daily observations,
while hourly observations allow another tripling. The 4 ppb
precision of GeoCARB is well adapted to the magnitude
of methane sources; we find that a precision larger than
6 ppb would considerably decrease the information con-
tent. An aspirational “hi-res” instrument using attributes
of currently proposed instruments (geostationary orbit,
1.3× 1.3 km2 pixels, hourly return time, 1 ppb precision)
can resolve much of the kilometer-scale spatial distribution
in the EDF inventory. This assumes that the emissions are
constant in time or that their temporal variability is known.
Resolving hourly variable emissions at the kilometer scale
will be very limited even with the aspirational “hi-res”
instrument.

Data availability. The source code for all models is publicly avail-
able through the cited references.

Appendix A: Computing the information content

We treat F and B−1 separately because it is computationally
infeasible to compute the eigenvalues of the matrix product
when we attempt to resolve hourly emissions as n > 106 and
both F and B−1 are n×nmatrices. This separation of F and
B−1 results in our estimate of I likely being an upper bound
on the information content. This follows from Bhatia (1997)
who prove that λ(CD)≺wλ↓ (C) ·λ↓ (D), where C and D are
Hermitian positive definite matrices, λ↓ (X) denotes the vec-
tor of eigenvalues of X in decreasing order, ≺w is the weak
majorization preorder, and p×q= (p1q1, . . .,pnqn). There-
fore, directly computing the eigenvalues of B1/2FB1/2, as
Rodgers (2000) suggests for the Bayesian inference case with
Gaussian errors, would likely yield fewer eigenvalues larger
than unity than our estimate.

In the case of temporally variable emissions, the system is
generally underdetermined (m< n) and we can use a singu-
lar value decomposition to efficiently compute the eigenval-
ues of F . For an m× n real matrix A, the non-zero singular
values of ATA and AAT are identical even though the sin-
gular vectors are different (see, for example, Rodgers, 2000)
but the dimensions of these two matrices are n×n andm×m,
respectively, and the eigenvalues can be computed from the
square root of the non-zero singular values. We can write
F = ĤT Ĥ, where Ĥ= L−1H is the pre-whitened Jacobian
and L is a lower triangular matrix from a Cholesky decom-
position of R (such that R= LLT ). Thus, the eigenvalues of
F can be obtained by analysis of either ĤT Ĥ (an n× n ma-
trix) or ĤĤT (an m×m matrix).
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