Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 11
Atmos. Chem. Phys., 18, 8265–8278, 2018
https://doi.org/10.5194/acp-18-8265-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 8265–8278, 2018
https://doi.org/10.5194/acp-18-8265-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Jun 2018

Research article | 13 Jun 2018

Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales

Alexander J. Turner et al.

Viewed

Total article views: 1,570 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
942 594 34 1,570 28 36
  • HTML: 942
  • PDF: 594
  • XML: 34
  • Total: 1,570
  • BibTeX: 28
  • EndNote: 36
Views and downloads (calculated since 19 Feb 2018)
Cumulative views and downloads (calculated since 19 Feb 2018)

Viewed (geographical distribution)

Total article views: 1,561 (including HTML, PDF, and XML) Thereof 1,552 with geography defined and 9 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (discussion paper)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (discussion paper)

No discussed metrics found.
Latest update: 31 Mar 2020
Publications Copernicus
Download
Short summary
We conduct a 1-week WRF-STILT simulation to generate methane column footprints at 1.3 km spatial resolution and hourly temporal resolution over the Barnett Shale. We find that a week of TROPOMI observations should provide regional (~30 km) information on temporally invariant sources and GeoCARB should provide information on temporally invariant sources at 2–7 km spatial resolution. An instrument precision better than 6 ppb is an important threshold for achieving fine resolution of emissions.
We conduct a 1-week WRF-STILT simulation to generate methane column footprints at 1.3 km spatial...
Citation