Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 2
Atmos. Chem. Phys., 18, 773–798, 2018
https://doi.org/10.5194/acp-18-773-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Study of ozone, aerosols and radiation over the Tibetan Plateau...

Atmos. Chem. Phys., 18, 773–798, 2018
https://doi.org/10.5194/acp-18-773-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Jan 2018

Research article | 22 Jan 2018

Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability

Wanyun Xu et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Wanyun Xu on behalf of the Authors (31 Oct 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (03 Nov 2017) by Tao Wang
RR by Anonymous Referee #2 (19 Nov 2017)
RR by Anonymous Referee #3 (08 Dec 2017)
ED: Publish subject to technical corrections (13 Dec 2017) by Tao Wang
Publications Copernicus
Download
Short summary
The impact of anthropogenic emissions and climate variability on the long-term trends and periodicity of surface ozone measured at Mt Waliguan (WLG) for the period of 1994–2013 is studied. STT ozone and rising emissions in eastern China contribute to spring and autumnal increasing trends, respectively. The 2–3-, 3–7-, and 11-year periodicities in the ozone data are linked to the QBO, EASMI, and sunspot cycle, respectively. An empirical model is obtained for normalised monthly ozone at WLG.
The impact of anthropogenic emissions and climate variability on the long-term trends and...
Citation