Articles | Volume 18, issue 9
https://doi.org/10.5194/acp-18-6923-2018
https://doi.org/10.5194/acp-18-6923-2018
Research article
 | 
17 May 2018
Research article |  | 17 May 2018

Fluxes of gaseous elemental mercury (GEM) in the High Arctic during atmospheric mercury depletion events (AMDEs)

Jesper Kamp, Henrik Skov, Bjarne Jensen, and Lise Lotte Sørensen

Related authors

Optimized design of flux chambers for measurement of ammonia emission after field application of slurry with full-scale farm machinery
Johanna Pedersen, Sasha D. Hafner, Andreas Pacholski, Valthor I. Karlsson, Li Rong, Rodrigo Labouriau, and Jesper N. Kamp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-212,https://doi.org/10.5194/amt-2023-212, 2024
Preprint under review for AMT
Short summary
Evaluation of open- and closed-path sampling systems for the determination of emission rates of NH3 and CH4 with inverse dispersion modeling
Yolanda Maria Lemes, Christoph Häni, Jesper Nørlem Kamp, and Anders Feilberg
Atmos. Meas. Tech., 16, 1295–1309, https://doi.org/10.5194/amt-16-1295-2023,https://doi.org/10.5194/amt-16-1295-2023, 2023
Short summary
Photoacoustic measurement with infrared band-pass filters significantly overestimates NH3 emissions from cattle houses due to volatile organic compound (VOC) interferences
Dezhao Liu, Li Rong, Jesper Kamp, Xianwang Kong, Anders Peter S. Adamsen, Albarune Chowdhury, and Anders Feilberg
Atmos. Meas. Tech., 13, 259–272, https://doi.org/10.5194/amt-13-259-2020,https://doi.org/10.5194/amt-13-259-2020, 2020
Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy
Jesper Nørlem Kamp, Albarune Chowdhury, Anders Peter S. Adamsen, and Anders Feilberg
Atmos. Meas. Tech., 12, 2837–2850, https://doi.org/10.5194/amt-12-2837-2019,https://doi.org/10.5194/amt-12-2837-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Reanalysis of NOAA H2 observations: implications for the H2 budget
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024,https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024,https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024,https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024,https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024,https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary

Cited articles

AMAP: AMAP Assessment 2011: Mercury in the Arctic, xiv, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 193 pp., 2011. 
Ammann, C. and Meixner, F. X.: Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities, J. Geophys. Res., 107, 4071, https://doi.org/10.1029/2001jd000649, 2002. 
Andreas, E. L., Hill, R. J., Gosz, J. R., Moore, D. I., Otto, W. D., and Sarma, A. D.: Stability Dependence of the Eddy-Accumulation Coefficients for Momentum and Scalars, Int. J. Phys. Biol. Proc. Atmos. Bound. Lay., 86, 409–420, https://doi.org/10.1023/A:1000625502550, 1998. 
Berg, T., Sekkesæter, S., Steinnes, E., Valdal, A., and Wibetoe, G.: Springtime depletion of mercury in the European Arctic as observed at Svalbard, Sci. Total Environ., 304, 43–51, https://doi.org/10.1016/S0048-9697(02)00555-7, 2003. 
Bowling, D. R., Turnipseed, A. A., Delany, A. C., Baldocchi, D. D., Greenberg, J. P., and Monson, R. K.: The use of relaxed eddy accumulation to measure biosphere–atmosphere exchange of isoprene and other biological trace gases, Oecologia, 116, 306–315, https://doi.org/10.1007/s004420050592, 1998. 
Download
Short summary
Measurements of mercury fluxes over snow surfaces are carried out at the High Arctic site at Villum Research Station in North Greenland. The measurements were carried out from 23 April to 12 May during spring 2016, where atmospheric mercury depletion events (AMDEs) took place. The measurements showed a net emission of 8.9 ng m−2 min−1, with only a few depositional fluxes. GEM fluxes and atmospheric temperature measurements suggest that GEM emission partly could be affected by surface heating.
Altmetrics
Final-revised paper
Preprint