Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 9 | Copyright
Atmos. Chem. Phys., 18, 6923-6938, 2018
https://doi.org/10.5194/acp-18-6923-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 May 2018

Research article | 17 May 2018

Fluxes of gaseous elemental mercury (GEM) in the High Arctic during atmospheric mercury depletion events (AMDEs)

Jesper Kamp1,2, Henrik Skov1,3, Bjarne Jensen1,3, and Lise Lotte Sørensen1,3 Jesper Kamp et al.
  • 1Arctic Research Centre, Aarhus University, 8000 Aarhus, Denmark
  • 2Department of Engineering, Aarhus University, 8000 Aarhus, Denmark
  • 3Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark

Abstract. Measurements of gaseous elemental mercury (GEM) fluxes over snow surfaces using a relaxed eddy accumulation (REA) system are carried out at the High Arctic site at the Villum Research Station, Station Nord, in North Greenland. Simultaneously, CO2 fluxes are determined using the eddy covariance (EC) technique. The REA system with dual inlets and dual analyzers is used to measure fluxes directly over the snow. The measurements were carried out from 23 April to 12 May during spring 2016, where atmospheric mercury depletion events (AMDEs) took place. The measurements showed a net emission of 8.9ngm−2min−1, with only a few minor episodes of net depositional fluxes, from a maximum deposition of 8.1ngm−2min−1 to a maximum emission of 179.2ngm−2min−1. The data support the theory that gaseous oxidized mercury (GOM) is deposited during AMDEs followed by formation of GEM on surface snow and is re-emitted as GEM shortly after the AMDEs. Furthermore, observation of the relation between GEM fluxes and atmospheric temperature suggests that GEM emission partly could be affected by surface heating. However, it is also clear that the GEM emissions are affected by many parameters.

Download & links
Publications Copernicus
Download
Short summary
Measurements of mercury fluxes over snow surfaces are carried out at the High Arctic site at Villum Research Station in North Greenland. The measurements were carried out from 23 April to 12 May during spring 2016, where atmospheric mercury depletion events (AMDEs) took place. The measurements showed a net emission of 8.9 ng m−2 min−1, with only a few depositional fluxes. GEM fluxes and atmospheric temperature measurements suggest that GEM emission partly could be affected by surface heating.
Measurements of mercury fluxes over snow surfaces are carried out at the High Arctic site at...
Citation
Share