Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 18, 6785-6799, 2018
https://doi.org/10.5194/acp-18-6785-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
16 May 2018
Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite
Scot M. Miller1,a, Anna M. Michalak1, Vineet Yadav2, and Jovan M. Tadić3 1Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
3Lawrence Berkeley National Laboratory, Berkeley, CA, USA
anow at: the Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
Abstract. NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite launched in summer of 2014. Its observations could allow scientists to constrain CO2 fluxes across regions or continents that were previously difficult to monitor. This study explores an initial step toward that goal; we evaluate the extent to which current OCO-2 observations can detect patterns in biospheric CO2 fluxes and constrain monthly CO2 budgets. Our goal is to guide top-down, inverse modeling studies and identify areas for future improvement. We find that uncertainties and biases in the individual OCO-2 observations are comparable to the atmospheric signal from biospheric fluxes, particularly during Northern Hemisphere winter when biospheric fluxes are small. A series of top-down experiments indicate how these errors affect our ability to constrain monthly biospheric CO2 budgets. We are able to constrain budgets for between two and four global regions using OCO-2 observations, depending on the month, and we can constrain CO2 budgets at the regional level (i.e., smaller than seven global biomes) in only a handful of cases (16 % of all regions and months). The potential of the OCO-2 observations, however, is greater than these results might imply. A set of synthetic data experiments suggests that retrieval errors have a salient effect. Advances in retrieval algorithms and to a lesser extent atmospheric transport modeling will improve the results. In the interim, top-down studies that use current satellite observations are best-equipped to constrain the biospheric carbon balance across only continental or hemispheric regions.
Citation: Miller, S. M., Michalak, A. M., Yadav, V., and Tadić, J. M.: Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite, Atmos. Chem. Phys., 18, 6785-6799, https://doi.org/10.5194/acp-18-6785-2018, 2018.
Publications Copernicus
Download
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes CO2 in the atmosphere globally. We evaluate the extent to which current OCO-2 observations can inform scientific understanding of the biospheric carbon balance. We find that current observations are best-equipped to constrain the biospheric carbon balance across continental or hemispheric regions and provide limited information on smaller regions.
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes CO2 in the atmosphere globally....
Share