Synoptic meteorological modes of variability for fine particulate matter (PM$_{2.5}$) air quality in major metropolitan regions of China

Danny M. Leung1, Amos P. K. Tai1,2, Loretta J. Mickley3,4, Jonathan M. Moch4, Aaron van Donkelaar5, Lu Shen3, and Randall V. Martin5,6

1Earth System Science Programme and Graduate Division of Earth and Atmospheric Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
2Institute of Environment, Energy and Sustainability, and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
3School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
4Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
5Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
6Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA

Correspondence: Amos P. K. Tai (amostai@cuhk.edu.hk)

Received: 3 October 2017 – Discussion started: 16 October 2017
Revised: 4 March 2018 – Accepted: 12 April 2018 – Published: 14 May 2018

Abstract. In his study, we use a combination of multivariate statistical methods to understand the relationships of PM$_{2.5}$ with local meteorology and synoptic weather patterns in different regions of China across various timescales. Using June 2014 to May 2017 daily total PM$_{2.5}$ observations from \sim1500 monitors, all deseasonalized and detrended to focus on synoptic-scale variations, we find strong correlations of daily PM$_{2.5}$ with all selected meteorological variables (e.g., positive correlation with temperature but negative correlation with sea-level pressure throughout China; positive and negative correlation with relative humidity in northern and southern China, respectively). The spatial patterns suggest that the apparent correlations with individual meteorological variables may arise from common association with synoptic systems. Based on a principal component analysis of 1998–2017 meteorological data to diagnose distinct meteorological modes that dominate synoptic weather in four major regions of China, we find strong correlations of daily PM$_{2.5}$ with several synoptic modes that explain 10 to 40% of daily PM$_{2.5}$ variability. These modes include monsoonal flows and cold frontal passages in northern and central China associated with the Siberian High, onshore flows in eastern China, and frontal rainstorms in southern China. Using the Beijing–Tianjin–Hebei (BTH) region as a case study, we further find strong interannual correlations of regionally averaged satellite-derived annual mean PM$_{2.5}$ with annual mean relative humidity (RH; positive) and springtime fluctuation frequency of the Siberian High (negative). We apply the resulting PM$_{2.5}$-to-climate sensitivities to the Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections to predict future PM$_{2.5}$ by the 2050s due to climate change, and find a modest decrease of \sim0.5 µg m$^{-3}$ in annual mean PM$_{2.5}$ in the BTH region due to more frequent cold frontal ventilation under the RCP8.5 future, representing a small “climate benefit”, but the RH-induced PM$_{2.5}$ change is inconclusive due to the large inter-model differences in RH projections.

1 Introduction

Air pollution caused by high surface concentrations of particulate matter (PM) and ozone in megacities are of utmost public health concern in China currently (Xu et al., 2013). China has experienced deteriorating air quality since the 1990s due to rapid industrial and economic development. Episodes of haze and smog pollution with dangerous levels of fine particulate matter (PM$_{2.5}$, particles with an aerodynamic diameter of or less than 2.5 µm) are becoming more common in
the most developed and highly populated city clusters in China (Chan et al., 2008; Zhang et al., 2007; Q. Zhang et al., 2014). For example, annual mean PM$_{2.5}$ concentration in Beijing increased dramatically from 12 µg m$^{-3}$ in 1973 to 66 µg m$^{-3}$ in 2013 (Han et al., 2016), with an average growth rate of +0.7 µg m$^{-3}$ yr$^{-1}$ for the past 4 decades. Outdoor air pollution in China alone has been shown to cause over 1 million premature deaths every year (Cohen et al., 2017). Many epidemiological studies have documented the harmful effects of PM$_{2.5}$ on cardiovascular and respiratory health (Cao et al., 2012a; Krewski et al., 2009; Madaniyazi et al., 2015; Pope and Dockery, 2006). Urban PM$_{2.5}$ originates from many sources including power plants, industry, vehicular emissions, road and soil dust, biomass burning, and agricultural activities (Zhang et al., 2015), but the regional concentrations are also strongly dependent on pan-regional transport (e.g., Jiang et al., 2013) and ventilation by atmospheric circulation (e.g., Chen et al., 2008; Zhang et al., 2012, 2016).

The severity of PM$_{2.5}$ pollution is known to be strongly dependent not only on emissions but also on weather conditions. For example, Zhang et al. (2016) showed using GEOS-Chem that cold surge occurrences over northern China explain about half of the variability of total PM$_{2.5}$. Several modeling studies have examined the effects of historical (Fu et al., 2016) and future (Jiang et al., 2013) changes in emissions and climate (i.e., long-term changes in weather statistics) on PM$_{2.5}$ air quality in East Asia, but large uncertainty remains due to the complexity of PM$_{2.5}$–meteorology interactions (Jiang et al., 2013; Shen et al., 2017; Tai et al., 2012b). Such poor understanding stems mainly from the diverse sensitivities of different PM$_{2.5}$ chemical components to meteorological changes, and from the strong coupling of PM$_{2.5}$ with synoptic circulation and the hydrological cycle. In this study, we apply a combination of multivariate statistical techniques to identify important local-scale meteorological variables and synoptic-scale meteorological modes that dominantly control the daily and interannual variability of PM$_{2.5}$ in China, and illustrate how these modes enable effective diagnosis of the effects of future synoptic circulation changes on China PM$_{2.5}$ air quality.

Local meteorological conditions are known to strongly influence the levels of all air pollutants including PM$_{2.5}$. PM$_{2.5}$–meteorology interactions are complex due to the varying responses of PM$_{2.5}$ species to different meteorological variables. Higher temperature favors the formation of sulfate and secondary organic aerosols due to the faster oxidation of sulfur dioxide (SO$_2$) and volatile organic compounds (VOCs; Jacob and Winner, 2009). Higher temperature also increases the emissions of biogenic VOCs from vegetation, especially in southern China where high-emitting broadleaf evergreen trees are prevalent (Ding et al., 2012; Zhang and Cao, 2015). Higher temperature favors the volatilization of nitrate, ammonium, and semivolatile organics by shifting the gas–aerosol phase equilibria toward the gas phase (Jiang et al., 2013; Shen et al., 2017), thereby decreasing these components. Depending on the region, an increase in relative humidity (RH) may enhance the production of hydroxyl (OH) radical and hydrogen peroxide (H$_2$O$_2$), which promotes SO$_2$ oxidization and increases the uptake of semivolatile components including nitrate and organics (Seinfeld and Pandis, 2016). Precipitation, via its direct scavenging effect, is a principal sink for all PM$_{2.5}$ components (Koch et al., 2003; Tai et al., 2010). Meanwhile, both strong wind and boundary layer mixing also tend to ventilate or dilute PM$_{2.5}$ (Chen et al., 2008; Jacob and Winner, 2009; Wang et al., 2012; Zhang and Cao, 2015). For instance, Han et al. (2016) found that annual mean PM$_{2.5}$ and wind speed in Beijing on stable meteorological days were negatively correlated over 1973–2013, illustrating the importance of ventilation on interannual PM$_{2.5}$ variability.

In addition to local meteorological conditions, synoptic-scale circulation patterns also play important roles in driving PM$_{2.5}$ variability. Different classification schemes for a wide range of synoptic circulation patterns have been researched extensively (Huth et al., 2008) and used worldwide to evaluate pollution–meteorology interactions (e.g., McGregor and Banzelis, 1995; Shahgedanva et al., 1998; Shen et al., 2017; Tai et al., 2012a; Zhang et al., 2012). Tai et al. (2012a) showed that cold fronts associated with midlatitude cyclone passages and maritime inflows were the major ventilation mechanisms of PM$_{2.5}$ in the US. Shen et al. (2017) further showed that the variability of PM$_{2.5}$ over the USA explained by both local meteorology and synoptic factors (43 %) are on average about 10 % higher than solely using local meteorology (34 %). In Asia, Chen et al. (2008) demonstrated that synoptic high-pressure systems in northern Mongolia associated with cold fronts facilitate the dispersion of air pollutants over northern China, whereas a surface high centered on Beijing–Tianjin–Hebei (BTH) favors accumulation. Zhang et al. (2013) showed similar results by extracting nine distinct synoptic pressure patterns over the North China Plain (NCP), and discovered that weak pressure tendency in NCP favors pollutant accumulation. Zhang et al. (2016) found that a cold surge associated with the East Asian winter monsoon significantly reduced PM$_{2.5}$ concentration in Beijing by 110 µg m$^{-3}$ within a few days. Moreover, the effects of local meteorology and synoptic circulation are not independent of each other. For instance, Tai et al. (2012a) found that much of the apparent observed correlation of PM$_{2.5}$ with temperature and pressure in the eastern USA are attributable to common association with cold frontal passages. To understand how meteorological changes may affect future PM$_{2.5}$ air quality, therefore, requires keen consideration of the co-variation of meteorological variables with synoptic-scale phenomena in an integrated framework (Jiang et al., 2005).

In this study, we perform correlation analysis to estimate the sensitivities of observed daily total PM$_{2.5}$ to a suite of meteorological variables from June 2014 to May 2017. As discussed in Sect. 3, however, correlations between local me-
climate models. This study represents an advancement over present-day and future climate simulations by an ensemble of models.

2. Data and methods

Daily assimilated meteorological fields for 1998–2017 over China are obtained from National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1 provided by the National Oceanic and Atmospheric Administration (NOAA) of the USA (Kalney et al., 1996). The dataset has a horizontal resolution of 2.5° × 2.5°. Following Tai et al. (2012a, b), eight meteorological variables are considered here (Table 1), including surface air temperature (X1), relative humidity (X2), precipitation rate (X3), sea-level pressure (X4), pressure tendency (X5), wind speed (X6), and two wind direction indicators (X7 and X8). To conduct correlation analysis and PC regression, meteorological data, except from variables X7, X8, and X9, are deseasonalized and detrended by subtracting the corresponding centered 31-day moving averages from the original data to focus on day-to-day, synoptic-scale variability. Specifically, for a meteorological variable Xk in any grid, the deseasonalized and detrended data is calculated as follows:

$$\tilde{X}_k(t) = X_k(t) - \frac{1}{31} \sum_{n=-15}^{r+15} X_k(n).$$

The deseasonalized and detrended data are also normalized to their standard deviations to yield zero means and unit variances.
To conduct the statistical analysis, MEP observations are interpolated using inverse distance weighting onto the same spatial grid as for the satellite AOD retrievals from multi-resolution satellite instruments and model simulations, such as the MODerate resolution Imaging Spectroradiometer (MODIS), the Multispectral Imaging SpectroRadiometer (MISR), and the GEOS-Chem chemical transport model, were weighted by the ground-based AOD observations from the Aerosol Robotic Network (AERONET) sun photometers. The daily AOD and near-surface PM$_{2.5}$ were simulated by GEOS-Chem to obtain the AOD–PM$_{2.5}$ relationship, which were applied to the satellite AOD retrievals to yield weighted PM$_{2.5}$ concentrations. Annual mean values of PM$_{2.5}$ were computed and then calibrated to ground-based PM$_{2.5}$ observations using the global geographically weighted regression (GWR) method (Brunsdon et al., 1996). Figure S1 in the Supplement shows the spatial variation of the satellite-derived PM$_{2.5}$ over China from van Donkelaar et al. (2016), which has a spatial correlation of $r = 0.79$ with MEP total PM$_{2.5}$ for year 2015.

To project the 2000–2050 effect of climate change on future PM$_{2.5}$, we use the meteorological variables in Table 1 archived from an ensemble of 15 climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the representative concentration pathway 8.5 (RCP8.5). We regrid the data from different models into the same 2.5° × 2.5° resolution. The details of the models can be found in Table S1 in the Supplement.

3 Correlations between daily PM$_{2.5}$ and meteorological variables

Here we first discuss the general correlation patterns between PM$_{2.5}$ and individual meteorological variables in China, and highlight what we can and cannot conclude from them. The Pearson’s correlation coefficients between each meteorological variable in Table 1 and interpolated daily total PM$_{2.5}$ are computed for each grid cell from June 2014 to May 2017.

Figure 2 shows the correlation maps for the whole period. Temperature is found to have an overall significant positive correlation with deseasonalized PM$_{2.5}$ in most regions of China (Fig. 2a), with the highest values appearing in BTH and SCB ($r = 0.6$). The correlation map of SLP (Fig. 2d), which is often an indicator of the passages of synoptic systems, has a similar spatial pattern to that with temperature but with an opposite sign and smaller magnitudes, suggesting that PM$_{2.5}$ tends to be low when SLP is high. The anticorrelation pattern is relatively weaker in southern China. Temperature and SLP are themselves found to be significantly negatively correlated throughout most of China (Fig. S2), and thus it is difficult to conclude whether they are the direct physical drivers of PM$_{2.5}$ variability, or the correlations simply reflect common association with larger meteorological regimes that control PM$_{2.5}$ variability.

Correlation between RH and PM$_{2.5}$ shows different patterns in northern vs. southern China (Fig. 2b). A positive
correlation ($r = 0.4$) is seen in BTH, likely reflecting higher PM water content in ambient air which can enhance the uptake of semivolatile components (Dawson et al., 2007b), consistent with previous findings (Wang et al., 2014). In southern China, however, RH is negatively correlated with PM$_{2.5}$, with larger correlations in SCB and PRD ($r = -0.4$) than in YRD ($r = -0.2$). As can be seen in Fig. 2c, negative correlation of precipitation with PM$_{2.5}$ in southern China is very similar to that of RH in Fig. 2b, likely reflecting the association of high RH with precipitation (Fig. 2c) and onshore wind (Fig. 2f), which can facilitate PM$_{2.5}$ deposition or ventilation (Zhu et al., 2012). Such a strong association between RH and precipitation may also explain the apparently positive correlation between precipitation and PM$_{2.5}$ in northern China, where RH-promoted aerosol formation is likely more important than wet deposition in the overall relationship.

Pressure tendency and wind speed exhibit similar correlation patterns (Fig. 2e–f). Pressure tendency, another indicator of synoptic-scale motions, is negatively correlated with PM$_{2.5}$ in southern China, including PRD ($r = -0.3$) and in northeastern China, suggesting that PM$_{2.5}$ tends to be low when SLP is increasing. Wind speed is also negatively correlated with PM$_{2.5}$ in similar regions. These patterns are consistent with advecting cold fronts with strong winds helping to ventilate PM$_{2.5}$ in heavily polluted regions (Tai et al., 2012a). Pressure tendency and wind speed have a positive correlation with PM$_{2.5}$ in northern China and some parts of western China, which may be due to the co-varying strong winds and frontal passages promoting the mobilization of mineral dust from the semiarid regions and deserts there.

Figure 2g shows the correlation of wind direction with PM$_{2.5}$, in which arrow directions indicate wind directions associated with increasing PM$_{2.5}$. The corresponding mass divergence map together with its calculation is shown in the Supplement (Fig. S3). For instance, PM$_{2.5}$ increases with southeasterly wind for all of eastern and northeastern China with a correlation of $r = 0.3$ on average. This relationship suggests that northwesterly wind tends to ventilate PM$_{2.5}$ in most of China. Two divergent wind patterns are seen, one in central China and one in Taklamakan Desert, and their positions mirror regions with the highest PM$_{2.5}$ concentrations in Fig. 1b. This result implies that wind transports pollutants from source regions to the peripheries.

A generally consistent correlation among neighboring grid cells may be associated with synoptic effects because the correlation pattern extends to a synoptic regional length scale. The correlation maps for most of the meteorological variables in Fig. 2 show such an effect. The commonality among the correlation patterns of PM$_{2.5}$ with different meteorological variables, which among themselves have various degrees of correlation, renders the interpretation of individual PM$_{2.5}$–meteorology relationships more difficult because the true driver of PM$_{2.5}$ variability may be masked by the collinearity among meteorological variables (as is pointed out above for the case of temperature and SLP). Whenever a strong correlation between PM$_{2.5}$ and a given meteorological variable (e.g., temperature, RH, precipitation, wind speed) is found, there can be three interpretations: (1) this variable is truly the physical driver for PM$_{2.5}$ variability; (2) at least part of the correlation may arise from the correlation of this variable with another local variable that is the true physical driver; and (3) at least part of the correlation may reflect common association with a larger, synoptic-scale phenomenon that drives PM$_{2.5}$ variability. To quantitatively differentiate between these possibilities and to ascertain the roles of local meteorology vs. synoptic-scale circulation on PM$_{2.5}$ variability, we conduct principal component analysis (PCA) on the eight meteorological variables to capture their common co-variations in an
ensemble of independent meteorological modes. We follow Tai et al. (2012a), and regress daily PM$_{2.5}$ on the resulting principal component (PC) time series to identify the dominant synoptic drivers of PM$_{2.5}$ variability. Their approach is particularly useful in that it enables the quantification of the fraction of PM$_{2.5}$ variability that can be explained by synoptic meteorological regimes.

4 Dominant meteorological modes for daily PM$_{2.5}$ variability based on principal component regression

We perform PCA on the eight meteorological variables for 1998–2017 in Table 1 to extract synoptic circulation patterns, focusing on the four major metropolitan regions in China (BTH, YRD, PRD, and SCB). We use this longer period of time history of PM$_{2.5}$ data from MEP (2014–2017) because we aim to characterize the climatologically important synoptic systems in China. The longer period also overlaps with the dominant synoptic modes in a region can be written as

$$ R_{\text{synoptic, } j}^2 = \frac{\text{SSR}_j}{\text{SST}} = \frac{\sum_j (\beta_j U_j(t))^2}{\sum_i (y_i(t))^2}. $$

This ratio characterizes the fraction of variance of daily PM$_{2.5}$ that can be explained by the jth PC in the PCR model. The PC with the largest SSR/SST is deemed the dominant meteorological mode for that region. Any PC which has an SSR/SST more than half of that of the dominant PC in a given season is also recognized as an important PC for that region. The total percentage of PM$_{2.5}$ variability explained by the K dominant synoptic modes in a region can be written as

$$ R_{\text{synoptic}}^2 = \sum_{j=1}^K R_{\text{synoptic, } j}^2. $$

The PCR model also allows us to separate between synoptically driven and locally driven PM$_{2.5}$ variability from the total meteorologically driven PM$_{2.5}$ variability. Regressing PM$_{2.5}$ using all eight individual meteorological variables yields a total R^2 value, which entails both synoptically and locally driven PM$_{2.5}$ variability, as discussed in Sect. 3. Using R^2 and R_{synoptic}^2 from the PCR model, we can infer the variability explained by local meteorology alone unrelated to synoptic modes, using

$$ R_{\text{local}}^2 = R^2 - R_{\text{synoptic}}^2, $$

where R_{local}^2 indicates the overall locally driven PM$_{2.5}$ variability.

Here we discuss the synoptic meteorological systems that dominate PM$_{2.5}$ variability on annual timescales for each region. Discussion of regimes that control PM$_{2.5}$ on seasonal timescales, as well as information on the values of SSR/SST and β, is included in the Supplement. We also note that in our interpretation, we focus only on the physical effects of meteorological phenomena. Non-physical drivers such as anthropogenic emissions can be correlated with meteorology to some extent (e.g., cold weather leading to higher emissions from heating); such effects, if any, would be encapsulated in the statistical model, but are difficult to diagnose explicitly due to a lack of corresponding data.

Figure 3 shows the dominant meteorological mode in BTH, which explains nearly 36% of PM$_{2.5}$ variability throughout the year. Figure 3a shows a strong anticorrelation between the time series of this mode and deseasonalized observed total PM$_{2.5}$ for the sample month of December 2014. Figure 3b shows the meteorological composition of the EOF of this annually dominant mode, with a positive phase consisting of low temperature, high SLP, and strong northerly winds. The error bars represent two standard
errors of the meteorological composition, computed by the formula shown in Sect. S1 in the Supplement. Similar loadings are seen for winter, spring, and fall. We choose 30 December 2014 as a representative day with PC changing from negative to positive phase to explain the physical meaning of this PC. As seen in the weather map (Fig. 3c), the positive phase of the PC represents a high-pressure system associated with the Siberian High with dry cold fronts sweeping across BTH from northwest to southeast. The Siberian High is the driver of the winter monsoon in East Asia, and such northwesterly flow efficiently advects PM$_{2.5}$ across BTH. Figure 3c shows a strongly decreasing temperature gradient and increasing pressure tendency originating from the Siberian High. PM$_{2.5}$ concentration decreases by nearly 240 µg m$^{-3}$ over 29 to 31 December (Fig. 3a). Regressing PM$_{2.5}$ on all eight individual meteorological variables yields an R^2 value of 43 %, indicating that local meteorology only contributes to an extra 7 % of the PM$_{2.5}$ variability in addition to that already explained by synoptic circulation. In addition to cold fronts from the Siberian High, easterly onshore flow with high humidity and southerly monsoon also controls daily PM$_{2.5}$ variability in spring and summer, explaining 18 and 17 % springtime and summertime variability of PM$_{2.5}$, respectively (see Sect. S2).

Figure 4 shows the dominant mode in YRD. This mode is important in spring, fall, and winter, and contributes up to 14 % of the PM$_{2.5}$ variability for the whole year. The two time series of the PC and PM$_{2.5}$ demonstrate anticorrelation with each other in March 2015 (Fig. 4a). The positive phase of this mode consists of low temperature, high RH and rainfall, high and decreasing pressure, and strong easterly winds (Fig. 4b). This set of meteorological phenomena is characteristic of onshore flow with rainfall, as demonstrated by the weather map on 25 March 2015, which shows cold and moist easterly winds originated from the high pressure centered over the East China Sea. Such winds sweep away pollutants and decrease PM$_{2.5}$ concentration by 30 µg m$^{-3}$ (Fig. 4c), and the associated rainfall also wash out PM$_{2.5}$. The nega-
Figure 4. Same as Fig. 3 but for the Yangtze River Delta (YRD). (a) Deseasonalized total PM$_{2.5}$ concentrations and the PC time series in the sample month of March 2015. (b) Composition of this dominant mode as determined by the coefficients a_{kj}. (c–d) Synoptic weather charts on 25 and 18 March 2015, with precipitation (mm d$^{-1}$) shown as shaded colors, wind speed (m s$^{-1}$) as vectors, and sea level pressure (hPa) as contours. Panel (c) shows the positive influence characterized by onshore wind with rainfall that corresponds to decreasing PM$_{2.5}$, while panel (d) shows the negative influence with little wind on YRD. The rectangles indicate YRD.

tive phase of this mode, as represented on 18 March 2015, shows anticyclonic flow leading to accumulation of PM$_{2.5}$ (Fig. 4d). Local meteorology is found to contribute to an additional 11 % of the PM$_{2.5}$ variability on top of that explained by synoptic effects. In addition to onshore flow, PCA for summer alone indicates that summertime low-pressure systems also deplete PM$_{2.5}$, likely due to the associated precipitation, explaining 24 % of summertime PM$_{2.5}$ variability. This PC is also sometimes characterized by northward-propagating tropical cyclones, with strong wind and rainfall (see Sect. S3).

Figure 5 shows the dominant mode for explaining PM$_{2.5}$ variability in PRD. This mode is dominant in spring, fall, and winter, and in total contributes 22 % of variability in PM$_{2.5}$ throughout the year. Figure 5a reveals a negative correlation between the PC for this mode and PM$_{2.5}$ in October 2014. The positive phase of this mode consists of high RH, precipitation, increasing pressure, and strong northerly winds (Fig. 5b). This set of meteorological phenomena represents a cold frontal rainstorm, as demonstrated by the weather map in Fig. 5c, which shows a frontal rain belt coinciding with the positive phase of the PC on 21 October 2014. Pressure contours were advected southward by northerly winds, and a regional rain belt brought maximum rainfall of up to 15 mm d$^{-1}$ to southern China. In general for this mode, advancing cold air sweeps from north to south and lifts the warmer and moister air, leading to precipitation and sometimes thunderstorms. Annually, regressing PM$_{2.5}$ on individual meteorological variables yields an R^2 value of 33 %; thus local meteorology contributes to an extra 11 % of PM$_{2.5}$ variability unexplained by synoptic circulation. In addition to cold frontal rainstorms, summertime PCA also shows that the air quality in summer PRD is also influenced by rainfall from low-pressure troughs as well as by landfalls of tropical cyclones (see Figs. S11, S12). These two modes explain 18 and 15 % of summertime PM$_{2.5}$ variability, respectively.
The troughs cause rainfall that scavenges pollutants; tropical cyclones making landfall to the east of PRD cause inversion layers that trap pollutants and degrade air quality (see Sect. S4).

Figure 6 shows the dominant mode in SCB in winter, which has a negative correlation with PM$_{2.5}$, as shown for the sample month of January 2015 (Fig. 6a). This mode dominates PM$_{2.5}$ variability year-round, explaining 25% of its day-to-day variability. PCA shows that its positive phase is characterized by low temperature, high SLP, and weak northwesterly winds (Fig. 6b), which resembles the dominant EOF in BTH. This mode is characterized by a northwesterly flow also associated with the Siberian High. On 29 January 2015, the Siberian High was situated southeast of Lake Baikal (Fig. 6c), advecting a clean, northwesterly cold front toward SCB and ventilating PM$_{2.5}$ by 150 µg m$^{-3}$ over 25 to 29 January. On 24 January, this mode was in its negative phase and SCB was under a relatively mild weather (Fig. 6d), while PM$_{2.5}$ was at a local maximum (Fig. 6a). Annually, local meteorology contributes to another 20% of the total PM$_{2.5}$ variability. In addition to cold frontal passages, rainfall also drives PM$_{2.5}$ variability especially in winter and spring, explaining 18 and 16% of wintertime and springtime PM$_{2.5}$ variability, respectively. This mode represents a cold frontal rain system that promotes wet deposition of pollutants (see Sect. S5).

5 Synoptic frequency and local meteorology as metrics for climate change impact on PM$_{2.5}$

Future climate change can significantly affect synoptic-scale circulation patterns and local meteorology, modifying the transport and deposition of PM$_{2.5}$ (Fiore et al., 2015; Jiang et al., 2013; Mickley et al., 2004). Based on the demonstrated strong relationships of synoptic circulation and local meteorology on daily PM$_{2.5}$, we build a regression model to infer how interannual variations of local and synoptic meteorology affect interannual PM$_{2.5}$ variability, which we then apply to future climate projections. This approach allows us to evaluate the potential impacts of climate change on PM$_{2.5}$ air quality. Here we adopt the PCA spectral analysis approach, namely, to apply a fast Fourier transform (FFT) to the daily time series of the dominant PCs for all seasons to extract the median frequencies from the resulting spec-
Figure 6. Same as Fig. 3 but for winter in the Sichuan Basin (SCB). (a) Deseasonalized total PM$_{2.5}$ concentrations and the PC time series in the sample month of January 2015. (b) Composition of this dominant mode as measured by the coefficients α_{kj}. (c–d) Synoptic weather maps on 29 and 24 January 2015. Panel (c) shows the positive influence characterized by a cold front from the Siberian High that advects PM$_{2.5}$ away, while panel (d) shows the negative influence characterized by stagnation over SCB. Temperature (K) is shown as shaded colors, wind speed (m s$^{-1}$) as vectors, and sea level pressure (hPa) as contours. The rectangles indicate SCB.

We use the same PCs generated using the 1998–2017 NCEP/NCAR meteorological data (Sect. 4), and smooth the resulting FFT spectra with a second-order autoregressive filter (Wilks, 2011). We focus on BTH as a case study. For example, spectral analysis shows that the Siberian High fluctuates between 58 and 67 times per year on average, and has a climatological frequency of 63 times per year averaged over 1998–2015.

Satellite-retrieved PM$_{2.5}$ has large uncertainties in seasonal mean values, and thus we make use of only the annual mean PM$_{2.5}$ values for building our regression model. We construct a multiple linear regression (MLR) model for the 1998–2015 satellite-retrieved annual mean PM$_{2.5}$ over BTH by spatially averaging the grid boxes covering the region. In selecting predictor variables, we consider the annual mean local meteorological variables in Table 1 (except SLP tendency, X_5, and the two wind direction indicators, X_7 and X_8, whose averages are often nearly zero) and the annual median frequencies of synoptic circulation patterns from all individual seasons diagnosed from spectral analysis. The predictand (annual mean PM$_{2.5}$) and potential predictors are detrended by subtracting from them the respective 7-year moving averages in order to remove long-term trends driven by emission changes. We adopt a forward selection approach (Wilks, 2011) to identify which climatic variables explain the greatest amount of interannual PM$_{2.5}$ variability, starting from the one explaining the largest percentage of PM$_{2.5}$ variability (having the largest adjusted R^2 value), and adding predictor variables until the enhancement in adjusted R^2 given by an additional predictor is less than 0.05. Variables that lead to a large variance inflation factor (> 2) are also excluded to avoid the issue of multicollinearity, which often leads to higher imprecision of regression estimates. Typically the forward selection algorithm does not yield more than three predictor variables for interannual PM$_{2.5}$ variability.

Table 2 shows the interannual PM$_{2.5}$ variability explained by the predictors, the corresponding regression coefficients and the p values for the BTH region. The two predictors selected by the forward selection algorithm are the frequency of the first PC in spring (i.e., the springtime Siberian High, Fig. S5) and annual mean RH. Figure 7 shows the correlation of detrended annual mean PM$_{2.5}$ with detrended annual
mean RH and the frequency of fluctuation of the springtime Siberian High. The negative correlation \(r = -0.51 \) between springtime PC frequency and annual PM\(_{2.5}\) indicates that more frequent occurrences of cold advection from the high-pressure systems further north, especially during spring, help ventilate PM\(_{2.5}\) in BTH and influence annual mean PM\(_{2.5}\) here. This is consistent with the relationship we found between PM\(_{2.5}\) and Siberian High on the daily timescale (Sect. 4). Annual mean RH has a positive correlation with PM\(_{2.5}\) \(r = 0.49 \), which is consistent with Sect. 3 where we found higher RH coinciding with higher PM\(_{2.5}\) on the daily timescale. Adding RH helps explain an additional 9% of interannual PM\(_{2.5}\) variability, and the two predictors in total give an adjusted \(R^2 \) value of 31%, which represents a reasonably high value for a linear model, given that non-linear PM\(_{2.5}\)–meteorology interactions and emission-driven PM\(_{2.5}\) variability are not included in the model. Although temperature has a strong daily correlation of \(r = 0.6 \) with PM\(_{2.5}\) in the correlation analysis in Sect. 3, annual mean temperature does not appear to correlate significantly with annual mean PM\(_{2.5}\) \(r = 0.18 \) and was not selected by the forward selection algorithm. Annual mean temperature also has a weak correlation with springtime Siberian High fluctuation frequency \(r = -0.25 \), which indicates that more frequent synoptic fluctuations have only little bearing on annual mean temperature, and that the strong daily PM\(_{2.5}\)–temperature co-variation is mostly a manifestation of synoptic influence. All other annual mean local meteorological variables have insignificant correlations with annual mean PM\(_{2.5}\).

Our findings show that meteorological effects on daily PM\(_{2.5}\) at least in part contribute to interannual variability PM\(_{2.5}\), a finding which we can utilize to estimate future changes in PM\(_{2.5}\). To this end, we extract the meteorological variables in Table 1 from the results of 15 models in the Climate Model Intercomparison Project Phase 5 (CMIP5) for 1996–2005 and 2046–2055 under the RCP8.5 scenario (Table S1). This scenario represents a business-as-usual future. We diagnose the 2000–2050 changes in the decadal averages of these variables and the median frequencies of the constructed PCs (Fig. 8a). To obtain an ensemble mean and distribution of the meteorological changes (Fig. 8b), we apply the weighting algorithm of Tebaldi et al. (2005) to the CMIP5 model outputs, which can discount any poorly performing models yielding meteorology that diverges from the present-day observations (using NCEP/NCAR reanalysis data in this study) or that diverges too much from the weighted ensemble mean, by giving those models a lower weight in the calculation of the ensemble mean and distribution.

We combine the meteorological changes with the PM\(_{2.5}\)–to-climate sensitivities (i.e., regression coefficients in Table 1) to obtain the following changes:

\[
\begin{align*}
\Delta \text{PM}_{2.5} &= \Delta \text{PC}_1 \times c_{\text{PC}_1} + \Delta \text{PC}_2 \times c_{\text{PC}_2} + \Delta \text{PC}_3 \times c_{\text{PC}_3} + \\
&\quad \Delta \text{RH} \times c_{\text{RH}} + \Delta \text{temperature} \times c_{\text{temperature}}
\end{align*}
\]

where the \(\Delta \) terms are the changes from the 1996–2005 to 2046–2055 period, and the \(c \) terms are the sensitivities from Table 1.

Table 2. Regression model that explains interannual variability of satellite-derived PM\(_{2.5}\) in Beijing–Tianjin–Hebei (BTH).

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Frequency of springtime Siberian High</th>
<th>Relative humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM(_{2.5}) sensitivity</td>
<td>(-0.31 \mu g m^{-3} yr^{-1})</td>
<td>(1.00 \mu g m^{-3} %^{-1})</td>
</tr>
<tr>
<td>Standard error</td>
<td>(\pm 0.16 \mu g m^{-3} yr^{-1})</td>
<td>(\pm 0.57 \mu g m^{-3} %^{-1})</td>
</tr>
<tr>
<td>p value for each predictor</td>
<td>0.0776</td>
<td>0.0977</td>
</tr>
<tr>
<td>Adjusted (R^2) value</td>
<td>0.309</td>
<td></td>
</tr>
<tr>
<td>F statistic</td>
<td>4.81</td>
<td></td>
</tr>
<tr>
<td>Total p value</td>
<td>0.0244</td>
<td></td>
</tr>
</tbody>
</table>
Our approach involves repeated (> 5000 times) sampling of regression coefficients in the MLR model and from the distribution and statistical significance of the changes in model physics among CMIP5 models. Here we make the “stationarity” assumption that the PM$_{2.5}$-to-climate sensitivities, ∂PM$_{2.5}$/\partial x_i, remain unchanged in the near future, such that ΔPM$_{2.5}$ is totally due to changes in future meteorology. We then use a Monte Carlo approach to characterize the probability distribution and statistical significance of the changes in PM$_{2.5}$ concentration arising from the uncertainties in the regression coefficients of the MLR model from their distributions as parameterized by the means and standard errors in Table 2, along with the sampling of the performance-weighted ensemble distributions of meteorological changes from the Tebaldi et al. (2005) algorithm. The sampling distributions are aggregated in accordance with Eq. (9) to obtain the final distributions of PM$_{2.5}$ changes for each predictor and the sum of the two (Fig. 8d).

Figure 8 shows the future changes of PM$_{2.5}$ concentrations with the corresponding changes in future meteorology. Changes in RH among CMIP5 models show high inconsistency, with values ranging from −2.01 to +3.19% (Fig. 8a). The ensemble mean of CMIP5 models shows a statistically insignificant increase (p value = 0.32) of RH of 0.23 ± 1.24 percentage points by 2050s in BTH (Fig. 8b), consistent with a future prediction of a change within <1% over BTH in the Fifth Assessment Report of Intergovernmental Panel on Climate Change (IPCC AR5; Fig. 12.21 in Collins et al., 2013). Past modeling studies show that RH remains nearly constant on climatological timescales and continental spatial scales (Randall et al., 2007), while recent investigation shows that near-surface RH decreases over most land areas globally (O’Gorman and Muller, 2010). IPCC AR5 (2013) shows that the regional mean RH in BTH changes by less than 1 standard deviation of interannual variability by year 2065, and the variability is dominated more by naturally occurring processes than by human activities.

We find that 10 of the 15 models project an increase in this synoptic frequency (Fig. 8a). Based on the weighting algorithm for discounting poorly performing models, we project an overall very likely (i.e., 90–100% likelihood according to IPCC guideline in Stocker et al., 2013) statistically significant increase (p value = 0.0008) in the frequency of synoptic-scale fluctuation of the Siberian High by 1.46 ± 0.39 yr$^{-1}$ by the 2050s (Fig. 8b). The generally increasing frequency is possibly driven by the future reduction in meridional temperature gradient, which decreases the intensity of the midlatitude jets and favors the amplification and persistence of surface anticyclones (e.g., Francis and Vavrus, 2012; Zhang et al., 2012). Francis and Vavrus (2012) showed that the upper tropospheric midlatitude jet (in the form of Rossby wave) exhibited reduced zonal velocity and augmented wave amplitude under warming over 1979–2010, which may have led to an increase in atmospheric blocking events (Barriopedro et al., 2006) and an enhancement in the likelihood of cold surges from the Siberian High. In another multi-model study, Park et al. (2011), however, found no significant correlation between cold surge occurrences and surface air temperature over East Asia, and thereby concluded that cold surge occurrences would remain constant in frequency under a warming climate. Our results based on PCA spectral analysis show a modest increase instead of unchanging frequency in synoptic-scale fluctuation of the Siberian High in the future.
Figure 8c and d show the corresponding future PM$_{2.5}$ changes from the baseline value of 57.2 µg m$^{-3}$ in the 2000s. Across the model results, we find an overall PM$_{2.5}$ change of 0.21 to +1.79 µg m$^{-3}$ due to changing RH, and of −0.29 to 0.63 µg m$^{-3}$ due to changing synoptic frequency (Fig. 8c). From the Monte Carlo sampling of the performance-weighted distribution of meteorological changes and uncertainties of statistical parameters, the RH-induced PM$_{2.5}$ change is 0.21 ± 1.44 µg m$^{-3}$ (p value = 0.58), and the frequency-induced PM$_{2.5}$ change is −0.46 ± 0.28 µg m$^{-3}$ (p value = 0.028, 97% likelihood; Fig. 8d). While the RH-induced PM$_{2.5}$ change is statistically insignificant and its sign inconclusive, we show that the higher frequency of fluctuation in the Siberian High alone, through enhancing cold frontal frequency, could lead to a very likely reduction in annual mean PM$_{2.5}$ and thus constitute a slight climate “benefit” for PM$_{2.5}$ air quality over BTH of China. We find that the greatest uncertainty stems from large inter-model differences in the future projections of RH and, which are much larger than those in the synoptic frequency projections. The regression coefficients have relatively moderate standard errors (Table 2) and contribute only little to the overall projection uncertainty.

6 Conclusions and discussion

In this study we use a combination of multivariate statistical methods to investigate the local and synoptic meteorological effects on daily and interannual variability of PM$_{2.5}$ in China. Based on the resulting statistical relationships between PM$_{2.5}$ with annual mean meteorological variables and synoptic frequencies, we also project future PM$_{2.5}$ changes in the Beijing–Tianjin–Hebei (BTH) region. First, we find strong correlations between daily observed PM$_{2.5}$ and individual meteorological variables in China over 2014–2017, and the spatial patterns of correlations suggest common association of these variables with synoptic circulation and transport. We therefore apply PCA on spatially averaged meteorological variables for four major metropolitan regions (BTH, YRD, PRD, SCB) for 1998–2017 (for all seasons and for the whole period) to diagnose the dominant synoptic meteorological modes, and the time series of these modes are used as predictor variables in an MLR model to explain today’s PM$_{2.5}$ variability for each region. We find that, in BTH, the presence of the Siberian High strongly controls PM$_{2.5}$ levels. Northerly monsoonal flows and advecting cold fronts from the Siberian High play key roles in ventilating PM$_{2.5}$ in BTH for all seasons except JJA. In YRD, onshore wind with precipitation from the East China Sea is the dominant meteorological mode, effectively scavenging PM$_{2.5}$ for all seasons except JJA. In PRD, frontal rain is a key driver reducing PM$_{2.5}$ by wet deposition for all seasons except JJA. In SCB, the Siberian High plays a key role in bringing clean air from the north that effectively dilutes pollution for all seasons. Different synoptic meteorological regimes in different seasons explain about 16–37% of PM$_{2.5}$ variability in 2014–2017.

We further show that the long-term fluctuations in the frequencies of the dominant synoptic modes also shape interannual variability of PM$_{2.5}$. Using the BTH region as a case study, we use regionally averaged annual mean local meteorological variables and annual median frequencies of the dominant synoptic modes of all individual seasons as potential predictors in a forward-selection MLR model to explain the interannual variability of satellite-derived annual mean PM$_{2.5}$ over 1998–2015. The forward selection model finds two significant predictors, namely, the frequency of springtime frontal passages (which indicates the interannual fluctuation in the strength of the Siberian High) and annual mean RH, with observed PM$_{2.5}$-to-climate sensitivities of −0.31 ± 0.16 µg m$^{-3}$ yr and 1.00 ± 0.57 µg m$^{-3}$ yr$^{-1}$, which together explain 31% of the variability of annual mean PM$_{2.5}$. The signs of correlations between PM$_{2.5}$ and the two predictors are also consistent with that from the daily PC regression analysis, showing a broad consistency in PM$_{2.5}$-meteorology relationships across different timescales.

We further address the effect of 1996–2055 climate change on future PM$_{2.5}$ air quality, using an ensemble of 15 CMIP5 climate model outputs under the RCP8.5 scenario. Ten out of 15 models show an increase in the frequency of strength fluctuation of the Siberian High with an ensemble mean of 1.46 yr$^{-1}$. Nine out of 15 models show a statistically insignificant change in future RH. Inter-model differences in the projected changes in RH are much larger than that in synoptic frequency of fluctuation in the Siberian High, owing to the high inconsistency in future projections of atmospheric humidity, especially on a regional scale (IPCC, 2013). We combine the ensemble projection of RH and synoptic frequency with the PM$_{2.5}$-to-climate sensitivity from our statistical model to project future PM$_{2.5}$ changes, with uncertainties quantified using a Monte Carlo approach. While the RH-induced PM$_{2.5}$ change is insignificant and inconclusive, we project for the 2050s a statistically significant and very likely (∼97% likelihood) decrease in PM$_{2.5}$ of −0.46 ± 0.28 µg m$^{-3}$ due to increasing frequency in the fluctuation of the Siberian High. The overall projection is inconclusive mostly due to the highly uncertain RH projections. Our prediction is comparable in magnitude with other studies (e.g., Jiang et al., 2013) and predictions for the USA (Shen et al., 2017; Tai et al., 2012b; Pye et al., 2009; Avise et al., 2009) and Europe (Juda-Rezler et al., 2012), but much smaller in magnitude compared with the baseline value of 57.2 µg m$^{-3}$ in the 2000s, suggesting that the “climate benefit” from higher synoptic frequency is rather small especially in comparison with what emission control efforts could do to curb PM$_{2.5}$ concentrations in China. Jiang et al. (2013) projected changes of PM$_{2.5}$ over China due to climate change alone under IPCC A1B scenario, and the resulting change over BTH is about +1 µg m$^{-3}$ averaged annually. They at-
ttributed their predictions to (1) changing precipitation that leads to a change in wet deposition and (2) increasing temperature that results in more volatilization of nitrate and ammonium, which differs from our conclusion that cold frontal ventilation dominates the PM$_{2.5}$–temperature correlation and total PM$_{2.5}$ response. Our statistical results (for BTH only) do not show significant relationships between temperature and PM$_{2.5}$ ($r = 0.18$) nor between rainfall and PM$_{2.5}$ ($r = 0.20$) on an interannual timescale, despite strong correlations on a daily timescale. This discrepancy between empirical results and process-based model results may stem from the inadequacy of satellite-derived PM$_{2.5}$ in capturing the variability caused by volatilization effect, an inadequate process-based model representation of the PM$_{2.5}$–temperature relationship (Shen et al., 2017), and from the uncertainty in emissions of PM precursors in the process-based model.

There are two major limitations of the statistical approach developed in this study. First, due to accuracy constraints of the satellite-derived PM$_{2.5}$ concentrations, we could only use annual mean PM$_{2.5}$ instead of seasonal mean PM$_{2.5}$ as the basis for interannual regression and future projections. Shen et al. (2017) showed that PM$_{2.5}$ responds to meteorological conditions differently in different seasons in the US. Due to the short period of surface monitoring data (see Sect. 2), we rely on the annual mean satellite-derived PM$_{2.5}$ with no seasonality in this study, and thus no seasonal predictions of PM$_{2.5}$ are possible. Another limitation is that the statistical projections rely on the stationarity assumption that the PM$_{2.5}$–climate sensitivities will be more or less constant in the future (see Eq. 7). This assumption may be acceptable for near-future projections (Fiore et al., 2012; IPCC, 2013), but it is less reliable for multidecadal projections especially as significant changes in emission levels may alter the chemical nature of total PM$_{2.5}$ and thus the interactions with meteorology. While process-based modeling studies of the future evolution of PM$_{2.5}$–meteorology relationships under varying levels of emissions in China are highly warranted, the empirical relationships as diagnosed from investigation of historical data in this study are valuable in providing a basis for testing and validating the process-based model sensitivities of PM$_{2.5}$ air quality to climate change.

Data availability. Data used in this study, including site-interpolated daily mean PM$_{2.5}$, NCEP/NCAR Reanalysis I meteorological data, and satellite-derived annual mean PM$_{2.5}$, are deposited in the publicly available institutional repository, accessible via this link: http://www.cuhk.edu.hk/sci/essc/gabi/data.html (Leung, 2018). Request for raw data or the complete set of data, or any questions regarding the data, can be directed to the principal investigator, Amos P. K. Tai (amostai@cuhk.edu.hk).

The Supplement related to this article is available online at https://doi.org/10.5194/acp-18-6733-2018-supplement.

Tai, A. P. K., Mickley, L. J., and Jacob, D. J.: Correlations between fine particulate matter (PM$_{2.5}$) and meteorological variables in the United States: Implications for the sensitivity of PM$_{2.5}$ to climate change, Atmos. Environ., 44, 3976–3984, 2010.

