Research article
14 May 2018
Research article | 14 May 2018
Observation of Kelvin–Helmholtz instabilities and gravity waves in the summer mesopause above Andenes in Northern Norway
Gunter Stober et al.
Related authors
Mesospheric Anomalous Diffusion During Noctilucent Clouds
Fazlul I. Laskar, Gunter Stober, Jens Fiedler, Meers M. Oppenheim, Jorge L. Chau, Duggirala Pallamraju, Nocholas M. Pedatella, Masaki Tsutsumi, and Toralf Renkwitz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1028,https://doi.org/10.5194/acp-2018-1028, 2018
Manuscript under review for ACP
Short summary
Simultaneous observations of NLCs and MSEs at midlatitudes: implications for formation and advection of ice particles
Michael Gerding, Jochen Zöllner, Marius Zecha, Kathrin Baumgarten, Josef Höffner, Gunter Stober, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 15569-15580, https://doi.org/10.5194/acp-18-15569-2018,https://doi.org/10.5194/acp-18-15569-2018, 2018
Short summary
Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999-1008, https://doi.org/10.5194/angeo-36-999-2018,https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer
Sabine Wüst, Thomas Offenwanger, Carsten Schmidt, Michael Bittner, Christoph Jacobi, Gunter Stober, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 11, 2937-2947, https://doi.org/10.5194/amt-11-2937-2018,https://doi.org/10.5194/amt-11-2937-2018, 2018
Short summary
Intercomparison of middle-atmospheric wind in observations and models
Rolf Rüfenacht, Gerd Baumgarten, Jens Hildebrand, Franziska Schranz, Vivien Matthias, Gunter Stober, Franz-Josef Lübken, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 1971-1987, https://doi.org/10.5194/amt-11-1971-2018,https://doi.org/10.5194/amt-11-1971-2018, 2018
Short summary
Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16
Gunter Stober, Vivien Matthias, Christoph Jacobi, Sven Wilhelm, Josef Höffner, and Jorge L. Chau
Ann. Geophys., 35, 711-720, https://doi.org/10.5194/angeo-35-711-2017,https://doi.org/10.5194/angeo-35-711-2017, 2017
Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway
Qiang Li, Markus Rapp, Anne Schrön, Andreas Schneider, and Gunter Stober
Ann. Geophys., 34, 1209-1229, https://doi.org/10.5194/angeo-34-1209-2016,https://doi.org/10.5194/angeo-34-1209-2016, 2016
Short summary
Coded continuous wave meteor radar
Juha Vierinen, Jorge L. Chau, Nico Pfeffer, Matthias Clahsen, and Gunter Stober
Atmos. Meas. Tech., 9, 829-839, https://doi.org/10.5194/amt-9-829-2016,https://doi.org/10.5194/amt-9-829-2016, 2016
Short summary
The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings
V. Matthias, P. Hoffmann, A. Manson, C. Meek, G. Stober, P. Brown, and M. Rapp
Ann. Geophys., 31, 1397-1415, https://doi.org/10.5194/angeo-31-1397-2013,https://doi.org/10.5194/angeo-31-1397-2013, 2013
In situ observations of meteor smoke particles (MSP) during the Geminids 2010: constraints on MSP size, work function and composition
M. Rapp, J. M. C. Plane, B. Strelnikov, G. Stober, S. Ernst, J. Hedin, M. Friedrich, and U.-P. Hoppe
Ann. Geophys., 30, 1661-1673, https://doi.org/10.5194/angeo-30-1661-2012,https://doi.org/10.5194/angeo-30-1661-2012, 2012
Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during WADIS sounding rocket project
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1043,https://doi.org/10.5194/acp-2018-1043, 2019
Manuscript under review for ACP
Short summary
Mesospheric Anomalous Diffusion During Noctilucent Clouds
Fazlul I. Laskar, Gunter Stober, Jens Fiedler, Meers M. Oppenheim, Jorge L. Chau, Duggirala Pallamraju, Nocholas M. Pedatella, Masaki Tsutsumi, and Toralf Renkwitz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1028,https://doi.org/10.5194/acp-2018-1028, 2018
Manuscript under review for ACP
Short summary
Simultaneous observations of NLCs and MSEs at midlatitudes: implications for formation and advection of ice particles
Michael Gerding, Jochen Zöllner, Marius Zecha, Kathrin Baumgarten, Josef Höffner, Gunter Stober, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 15569-15580, https://doi.org/10.5194/acp-18-15569-2018,https://doi.org/10.5194/acp-18-15569-2018, 2018
Short summary
Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999-1008, https://doi.org/10.5194/angeo-36-999-2018,https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Multi-static spatial and angular studies of polar mesospheric summer echoes combining MAARSY and KAIRA
Jorge L. Chau, Derek McKay, Juha P. Vierinen, Cesar La Hoz, Thomas Ulich, Markku Lehtinen, and Ralph Latteck
Atmos. Chem. Phys., 18, 9547-9560, https://doi.org/10.5194/acp-18-9547-2018,https://doi.org/10.5194/acp-18-9547-2018, 2018
Short summary
Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer
Sabine Wüst, Thomas Offenwanger, Carsten Schmidt, Michael Bittner, Christoph Jacobi, Gunter Stober, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 11, 2937-2947, https://doi.org/10.5194/amt-11-2937-2018,https://doi.org/10.5194/amt-11-2937-2018, 2018
Short summary
Intercomparison of middle-atmospheric wind in observations and models
Rolf Rüfenacht, Gerd Baumgarten, Jens Hildebrand, Franziska Schranz, Vivien Matthias, Gunter Stober, Franz-Josef Lübken, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 1971-1987, https://doi.org/10.5194/amt-11-1971-2018,https://doi.org/10.5194/amt-11-1971-2018, 2018
Short summary
Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16
Gunter Stober, Vivien Matthias, Christoph Jacobi, Sven Wilhelm, Josef Höffner, and Jorge L. Chau
Ann. Geophys., 35, 711-720, https://doi.org/10.5194/angeo-35-711-2017,https://doi.org/10.5194/angeo-35-711-2017, 2017
Spatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign
Boris Strelnikov, Artur Szewczyk, Irina Strelnikova, Ralph Latteck, Gerd Baumgarten, Franz-Josef Lübken, Markus Rapp, Stefanos Fasoulas, Stefan Löhle, Martin Eberhart, Ulf-Peter Hoppe, Tim Dunker, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Jörg Gumbel, and Aroh Barjatya
Ann. Geophys., 35, 547-565, https://doi.org/10.5194/angeo-35-547-2017,https://doi.org/10.5194/angeo-35-547-2017, 2017
Short summary
Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway
Qiang Li, Markus Rapp, Anne Schrön, Andreas Schneider, and Gunter Stober
Ann. Geophys., 34, 1209-1229, https://doi.org/10.5194/angeo-34-1209-2016,https://doi.org/10.5194/angeo-34-1209-2016, 2016
Short summary
Coded continuous wave meteor radar
Juha Vierinen, Jorge L. Chau, Nico Pfeffer, Matthias Clahsen, and Gunter Stober
Atmos. Meas. Tech., 9, 829-839, https://doi.org/10.5194/amt-9-829-2016,https://doi.org/10.5194/amt-9-829-2016, 2016
Short summary
The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings
V. Matthias, P. Hoffmann, A. Manson, C. Meek, G. Stober, P. Brown, and M. Rapp
Ann. Geophys., 31, 1397-1415, https://doi.org/10.5194/angeo-31-1397-2013,https://doi.org/10.5194/angeo-31-1397-2013, 2013
In situ observations of meteor smoke particles (MSP) during the Geminids 2010: constraints on MSP size, work function and composition
M. Rapp, J. M. C. Plane, B. Strelnikov, G. Stober, S. Ernst, J. Hedin, M. Friedrich, and U.-P. Hoppe
Ann. Geophys., 30, 1661-1673, https://doi.org/10.5194/angeo-30-1661-2012,https://doi.org/10.5194/angeo-30-1661-2012, 2012
Related subject area
Simultaneous observations of NLCs and MSEs at midlatitudes: implications for formation and advection of ice particles
Michael Gerding, Jochen Zöllner, Marius Zecha, Kathrin Baumgarten, Josef Höffner, Gunter Stober, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 15569-15580, https://doi.org/10.5194/acp-18-15569-2018,https://doi.org/10.5194/acp-18-15569-2018, 2018
Short summary
Climatology of mesopause region nocturnal temperature, zonal wind and sodium density observed by sodium lidar over Hefei, China (32° N, 117° E)
Tao Li, Chao Ban, Xin Fang, Jing Li, Zhaopeng Wu, Wuhu Feng, John M. C. Plane, Jiangang Xiong, Daniel R. Marsh, Michael J. Mills, and Xiankang Dou
Atmos. Chem. Phys., 18, 11683-11695, https://doi.org/10.5194/acp-18-11683-2018,https://doi.org/10.5194/acp-18-11683-2018, 2018
Short summary
Multi-static spatial and angular studies of polar mesospheric summer echoes combining MAARSY and KAIRA
Jorge L. Chau, Derek McKay, Juha P. Vierinen, Cesar La Hoz, Thomas Ulich, Markku Lehtinen, and Ralph Latteck
Atmos. Chem. Phys., 18, 9547-9560, https://doi.org/10.5194/acp-18-9547-2018,https://doi.org/10.5194/acp-18-9547-2018, 2018
Short summary
Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations
Christoph Kalicinsky, Peter Knieling, Ralf Koppmann, Dirk Offermann, Wolfgang Steinbrecht, and Johannes Wintel
Atmos. Chem. Phys., 16, 15033-15047, https://doi.org/10.5194/acp-16-15033-2016,https://doi.org/10.5194/acp-16-15033-2016, 2016
Short summary
MIPAS observations of longitudinal oscillations in the mesosphere and the lower thermosphere: climatology of odd-parity daily frequency modes
Maya García-Comas, Francisco González-Galindo, Bernd Funke, Angela Gardini, Aythami Jurado-Navarro, Manuel López-Puertas, and William E. Ward
Atmos. Chem. Phys., 16, 11019-11041, https://doi.org/10.5194/acp-16-11019-2016,https://doi.org/10.5194/acp-16-11019-2016, 2016
Short summary
Neutral atmosphere temperature trends and variability at 90 km, 70 °N, 19 °E, 2003–2014
Silje Eriksen Holmen, Chris M. Hall, and Masaki Tsutsumi
Atmos. Chem. Phys., 16, 7853-7866, https://doi.org/10.5194/acp-16-7853-2016,https://doi.org/10.5194/acp-16-7853-2016, 2016
Short summary
Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709-2721, https://doi.org/10.5194/acp-15-2709-2015,https://doi.org/10.5194/acp-15-2709-2015, 2015
Short summary
The quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012
D. Scheiben, B. Tschanz, K. Hocke, N. Kämpfer, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 14, 6511-6522, https://doi.org/10.5194/acp-14-6511-2014,https://doi.org/10.5194/acp-14-6511-2014, 2014
The diurnal and semidiurnal tides over Ascension Island (° S, 14° W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM
R. N. Davis, J. Du, A. K. Smith, W. E. Ward, and N. J. Mitchell
Atmos. Chem. Phys., 13, 9543-9564, https://doi.org/10.5194/acp-13-9543-2013,https://doi.org/10.5194/acp-13-9543-2013, 2013
The roles of vertical advection and eddy diffusion in the equatorial mesospheric semi-annual oscillation (MSAO)
R. L. Gattinger, E. Kyrölä, C. D. Boone, W. F. J. Evans, K. A. Walker, I. C. McDade, P. F. Bernath, and E. J. Llewellyn
Atmos. Chem. Phys., 13, 7813-7824, https://doi.org/10.5194/acp-13-7813-2013,https://doi.org/10.5194/acp-13-7813-2013, 2013
The climatology, propagation and excitation of ultra-fast Kelvin waves as observed by meteor radar, Aura MLS, TRMM and in the Kyushu-GCM
R. N. Davis, Y.-W. Chen, S. Miyahara, and N. J. Mitchell
Atmos. Chem. Phys., 12, 1865-1879, https://doi.org/10.5194/acp-12-1865-2012,https://doi.org/10.5194/acp-12-1865-2012, 2012
Cited articles
Baumgarten, G. and Fritts, D. C.: Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations, J. Geophys. Res.-Atmos., 119, 9324–9337, https://doi.org/10.1002/2014JD021832, 2014.
Browning, K. and Wexler, R.: The Determination of Kinematic Properties of a Wind field Using Doppler Radar, J. App. Meteorol., 7, 105–113, 1968.
Chau, J. L. and Kudeki, E.: First E- and D-region incoherent scatter spectra observed over Jicamarca, Ann. Geophys., 24, 1295–1303, https://doi.org/10.5194/angeo-24-1295-2006, 2006.
Chilson, P. B., Yu, T.-Y., Palmer, R. D., and Kirkwood, S.: Aspect sensitivity measurements of polar mesosphere summer echoes using coherent radar imaging, Ann. Geophys., 20, 213–223, https://doi.org/10.5194/angeo-20-213-2002, 2002.
Demissie, T. D., Espy, P. J., Kleinknecht, N. H., Hatlen, M., Kaifler, N., and Baumgarten, G.: Characteristics and sources of gravity waves observed in noctilucent cloud over Norway, Atmos. Chem. Phys., 14, 12133–12142, https://doi.org/10.5194/acp-14-12133-2014, 2014.
Fritts, D. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1–64, https://doi.org/10.1029/2001RG000106, 2003.
Fritts, D. C., Baumgarten, G., Wan, K., Werne, J., and Lund, T.: Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 2. Modeling and interpretation of observations, J. Geophys. Res.-Atmos., 119, 9359–9375, https://doi.org/10.1002/2014JD021833, 2014.
Fritts, D. C., Laughman, B., Lund, T. S., and Snively, J. B.: Self acceleration and instability of gravity wave packets: 1. Effects of temporal localization, J. Geophys. Res.-Atmos., 120, 8783–8803, https://doi.org/10.1002/2015JD023363, 2015.
Fukao, S., Luce, H., Mega, T., and Yamamoto, M. K.: Extensive studies of large-amplitude Kelvin-Helmholtz billows in the lower atmosphere with VHF middle and upper atmosphere radar, Q. J. Roy. Meteor. Soc., 137, 1019–1041, 2011.
Hecht, J. H., Fricke-Begemann, C., Walterscheid, R. L., and Höffner, J.: Observations of the breakdown of an atmospheric gravity wave near the cold summer mesopause at 54N, Geophys. Res. Lett., 27, 879–882, https://doi.org/10.1029/1999GL010792, 2000.
Hecht, J. H., Liu, A. Z., Walterscheid, R. L., and Rudy, R. J.: Maui Mesosphere and Lower Thermosphere (Maui MALT) observations of the evolution of Kelvin-Helmholtz billows formed near 86 km altitude, J. Geophys. Res.-Atmos., 110, D09S10, https://doi.org/10.1029/2003JD003908, 2005.
Hecht, J. H., Liu, A. Z., Walterscheid, R. L., Franke, S. J., Rudy, R. J., Taylor, M. J., and Pautet, P.-D.: Characteristics of short-period wavelike features near 87 km altitude from airglow and lidar observations over Maui, J. Geophys. Res.-Atmos., 112, D16101, https://doi.org/10.1029/2006JD008148, 2007.
Hickey, M. P., Taylor, M. J., Gardner, C. S., and Gibbons, C. R.: Full wave modeling of small scale gravity waves using Airborne Lidar and Observations of the Hawaiian Airglow (ALOHA 93) O(1 S) images and coincident Na wind/temperature lidar measurements, J. Geophys. Res.-Atmos., 103, 6439–6453, https://doi.org/10.1029/97JD03373, 1998.
Hocking, W., Fuller, B., and Vandepeer, B.: Real-time determination of meteor-related parameters utilizing modern digital technology, J. Atmos. Sol.-Terr. Phy., 63, 155–169, https://doi.org/10.1016/S1364-6826(00)00138-3, 2001.
Horinouchi, T., Nakamura, T., and Kosaka, J.-I.: Convectively generated mesoscale gravity waves simulated throughout the middle atmosphere, Geophys. Res. Lett., 29, 3-1–3-4, https://doi.org/10.1029/2002GL016069, 2002.
Jones, J., Webster, A. R., and Hocking, W. K.: An improved interferometer design for use with meteor radars, Radio Sci., 33, 55–65, https://doi.org/10.1029/97RS03050, 1998.
Klostermeyer, J. and Rüster, R.: Radar observation and model computation of a jet stream-generated Kelvin-Helmholtz instability, J. Geophys. Res.-Oceans, 85, 2841–2846, https://doi.org/10.1029/JC085iC05p02841, 1980.
Klostermeyer, J. and Rüster, R.: Further study of a jet stream-generated Kelvin-Helmholtz instability, J. Geophys. Res.-Oceans, 86, 6631–6637, https://doi.org/10.1029/JC086iC07p06631, 1981.
Kudeki, E., Bhattacharyya, S., and Woodman, R. F.: A new approach in incoherent scatter F region E × B drift measurements at Jicamarca, J. Geophys. Res.-Space, 104, 28145–28162, https://doi.org/10.1029/1998JA900110, 1999.
Latteck, R. and Bremer, J.: Long-term changes of polar mesosphere summer echoes at 69° N, J. Geophys. Res.-Atmos., 118, 10441–10448, https://doi.org/10.1002/jgrd.50787, 2012.
Latteck, R., Singer, W., Rapp, M., Vandepeer, B., Renkwitz, T., Zecha, M., and Stober, G.: MAARSY: The new MST radar on Andøya – System description and first results, Radio Sci., 47, RS1006, https://doi.org/10.1029/2011RS004775, 2012.
Lehmacher, G., Guo, L., Kudeki, E., Reyes, P., Akgiray, A., and Chau, J.: High-resolution observations of mesospheric layers with the Jicamarca VHF radar, Adv. Space Res., 40, 734–743, 2007.
Lehmacher, G. A., Kudeki, E., Akgiray, A., Guo, L., Reyes, P., and Chau, J.: Radar cross sections for mesospheric echoes at Jicamarca, Ann. Geophys., 27, 2675–2684, https://doi.org/10.5194/angeo-27-2675-2009, 2009.
Lindzen, R. S.: Supersaturation of Vertically Propagating Internal Gravity Waves, J. Atmos. Sci., 45, 705–711, 1988.
Lue, H. Y., Kuo, F. S., Fukao, S., and Nakamura, T.: Studies of gravity wave propagation in the mesosphere observed by MU radar, Ann. Geophys., 31, 845–858, https://doi.org/10.5194/angeo-31-845-2013, 2013.
McCormack, J., Hoppel, K., Kuhl, D., de Wit, R., Stober, G., Espy, P., Baker, N., Brown, P., Fritts, D., Jacobi, C., Janches, D., Mitchell, N., Ruston, B., Swadley, S., Viner, K., Whitcomb, T., and Hibbins, R.: Comparison of mesospheric winds from a high-altitude meteorological analysis system and meteor radar observations during the boreal winters of 2009–2010 and 2012–2013, J. Atmos. Sol.-Terr. Phy., 154, 132–166, https://doi.org/10.1016/j.jastp.2016.12.007, 2017.
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.-Space, 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Pokhotelov, D., Becker, E., Stober, G., and Chau, J. L.: Seasonal variability of atmospheric tides in the mesosphere and lower thermosphere: meteor radar data and simulations, Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-17, in review, 2018.
Rapp, M. and Lübken, F.-J.: Polar mesosphere summer echoes (PMSE): Review of observations and current understanding, Atmos. Chem. Phys., 4, 2601–2633, https://doi.org/10.5194/acp-4-2601-2004, 2004.
Reid, I. M., Ruester, R., and Schmidt, G.: VHF radar observations of cat's-eye-like structures at mesospheric heights, Nature, 327, 43–45, https://doi.org/10.1038/327043a0, 1987.
Sheth, R., Kudeki, E., Lehmacher, G., Sarango, M., Woodman, R., Chau, J., Guo, L., and Reyes, P.: A high-resolution study of mesospheric fine structure with the Jicamarca MST radar, Ann. Geophys., 24, 1281–1293, https://doi.org/10.5194/angeo-24-1281-2006, 2006.
Snively, J. B. and Pasko, V. P.: Breaking of thunderstorm generated gravity waves as a source of short period ducted waves at mesopause altitudes, Geophys. Res. Lett., 30, 2254, https://doi.org/10.1029/2003GL018436, 2003.
Sommer, S., Stober, G., Chau, J. L., and Latteck, R.: Geometric considerations of polar mesospheric summer echoes in tilted beams using coherent radar imaging, Adv. Radio Sci., 12, 197–203, https://doi.org/10.5194/ars-12-197-2014, 2014.
Sommer, S., Stober, G., and Chau, J. L.: On the angular dependence and scattering model of polar mesospheric summer echoes at VHF, J. Geophys. Res.-Atmos., 121, 278–288, https://doi.org/10.1002/2015JD023518, 2016.
Stober, G., Sommer, S., Rapp, M., and Latteck, R.: Investigation of gravity waves using horizontally resolved radial velocity measurements, Atmos. Meas. Tech., 6, 2893–2905, https://doi.org/10.5194/amt-6-2893-2013, 2013.
Stober, G., Matthias, V., Jacobi, C., Wilhelm, S., Höffner, J., and Chau, J. L.: Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16, Ann. Geophys., 35, 711–720, https://doi.org/10.5194/angeo-35-711-2017, 2017.
Stober, G., Chau, J. L., Vierinen, J., Jacobi, C., and Wilhelm, S.: Retrieving horizontally resolved wind fields using multi-static meteor radar observations, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-93, in review, 2018.
Suzuki, S., Shiokawa, K., Otsuka, Y., Kawamura, S., and Murayama, Y.: Evidence of gravity wave ducting in the mesopause region from airglow network observations, Geophys. Res. Lett., 40, 601–605, https://doi.org/10.1029/2012GL054605, 2013.
Taylor, M. J., Pendleton Jr, W. R., Pautet, P.-D., Zhao, Y., Olsen, C., Babu, H. K. S., Medeiros, A. F., and Takahashi, H.: Recent progress in mesospheric gravity wave studies using nigthglow imaging system, Revista Brasileira de Geofisica, 25, 49–58, 2007.
Werne, J. and Fritts, D.: Anisotropy in a stratified shear layer, Phys. Chem. Earth Pt. B, 26, 263–268, https://doi.org/10.1016/S1464-1909(01)00004-1, 2001.
Werne, J. and Fritts, D. C.: Stratified shear turbulence: Evolution and statistics, Geophys. Res. Lett., 26, 439–442, https://doi.org/10.1029/1999GL900022, 1999.
Wilhelm, S., Stober, G., and Chau, J. L.: A comparison of 11-year mesospheric and lower thermospheric winds determined by meteor and MF radar at 69° N, Ann. Geophys., 35, 893–906, https://doi.org/10.5194/angeo-35-893-2017, 2017.
Woodman, R. F.: Coherent radar imaging: Signal processing and statistical properties, Radio Sci., 32, 2373–2391, https://doi.org/10.1029/97RS02017, 1997.
Wüst, S., Offenwanger, T., Schmidt, C., Bittner, M., Jacobi, C., Stober, G., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Derivation of horizontal and vertical wavelengths using a scanning OH(3-1) airglow spectrometer, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-350, in review, 2017.