Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 9 | Copyright
Atmos. Chem. Phys., 18, 6141-6156, 2018
https://doi.org/10.5194/acp-18-6141-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 03 May 2018

Research article | 03 May 2018

Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

Hsiang-He Lee1, Oussama Iraqui2, Yefu Gu3, Steve Hung-Lam Yim3, Apisada Chulakadabba4, Adam Yiu-Ming Tonks5, Zhengyu Yang6, and Chien Wang1,7 Hsiang-He Lee et al.
  • 1Center for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, Singapore
  • 2Energy and Environmental Engineering Department, National Institute of Applied Science of Lyon (INSA Lyon), Lyon, France
  • 3Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong SAR, China
  • 4Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
  • 5Division of Science, Yale-NUS College, Singapore
  • 6Department of Mathematics, National University of Singapore, Singapore
  • 7Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39% of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20% by fossil fuel burning alone, a further 8% by biomass burning alone, and a further 5% by a combination of fossil fuel burning and biomass burning. Analysis of an 24h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34%. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from  ∼ 4110 per year in 2002 to  ∼ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these results suggest that besides minimizing biomass burning activities, an effective air pollution mitigation policy for Southeast Asia needs to consider controlling emissions from non-fire anthropogenic sources.

Download & links
Publications Copernicus
Download
Short summary
Our study shows that across ASEAN 50 cities, these model results reveal that 39 % of observed low-visibility days can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. The remaining 28 % of observed low-visibility days remains unexplained, likely due to emissions sources that have not been accounted for.
Our study shows that across ASEAN 50 cities, these model results reveal that 39 % of observed...
Citation
Share