Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 8
Atmos. Chem. Phys., 18, 6095-6120, 2018
https://doi.org/10.5194/acp-18-6095-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 6095-6120, 2018
https://doi.org/10.5194/acp-18-6095-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 02 May 2018

Research article | 02 May 2018

The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling

Mike J. Newland1,3, Andrew R. Rickard2,3, Tomás Sherwen3, Mathew J. Evans2,3, Luc Vereecken4,5, Amalia Muñoz6, Milagros Ródenas6, and William J. Bloss1 Mike J. Newland et al.
  • 1University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, UK
  • 2National Centre for Atmospheric Science (NCAS), University of York, York, UK
  • 3Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
  • 4Max Planck Institute for Chemistry, Atmospheric Sciences, Hahn-Meitner-Weg 1, Mainz, Germany
  • 5Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich, Germany
  • 6Fundación CEAM, EUPHORE Laboratories, Avda/Charles R. Darwin 14. Parque Tecnologico, Valencia, Spain

Abstract. The gas-phase reaction of alkenes with ozone is known to produce stabilised Criegee intermediates (SCIs). These biradical/zwitterionic species have the potential to act as atmospheric oxidants for trace pollutants such as SO2, enhancing the formation of sulfate aerosol with impacts on air quality and health, radiative transfer and climate. However, the importance of this chemistry is uncertain as a consequence of limited understanding of the abundance and atmospheric fate of SCIs. In this work we apply experimental, theoretical and numerical modelling methods to quantify the atmospheric impacts, abundance and fate of the structurally diverse SCIs derived from the ozonolysis of monoterpenes, the second most abundant group of unsaturated hydrocarbons in the atmosphere. We have investigated the removal of SO2 by SCIs formed from the ozonolysis of three atmospherically important monoterpenes (α-pinene, β-pinene and limonene) in the presence of varying amounts of water vapour in large-scale simulation chamber experiments that are representative of boundary layer conditions. The SO2 removal displays a clear dependence on water vapour concentration, but this dependence is not linear across the range of [H2O] explored. At low [H2O] a strong dependence of SO2 removal on [H2O] is observed, while at higher [H2O] this dependence becomes much weaker. This is interpreted as being caused by the production of a variety of structurally (and hence chemically) different SCIs in each of the systems studied, which displayed different rates of reaction with water and of unimolecular rearrangement or decomposition. The determined rate constants, k(SCI+H2O), for those SCIs that react primarily with H2O range from 4 to 310 × 10−15cm3s−1. For those SCIs that predominantly react unimolecularly, determined rates range from 130 to 240s−1. These values are in line with previous results for the (analogous) stereo-specific SCI system of syn-/anti-CH3CHOO. The experimental results are interpreted through theoretical studies of the SCI unimolecular reactions and bimolecular reactions with H2O, characterised for α-pinene and β-pinene at the M06-2X/aug-cc-pVTZ level of theory. The theoretically derived rates agree with the experimental results within the uncertainties. A global modelling study, applying the experimental results within the GEOS-Chem chemical transport model, suggests that >97% of the total monoterpene-derived global SCI burden is comprised of SCIs with a structure that determines that they react slowly with water and that their atmospheric fate is dominated by unimolecular reactions. Seasonally averaged boundary layer concentrations of monoterpene-derived SCIs reach up to 1.4 × 104cm−3 in regions of elevated monoterpene emissions in the tropics. Reactions of monoterpene-derived SCIs with SO2 account for <1% globally but may account for up to 60% of the gas-phase SO2 removal over areas of tropical forests, with significant localised impacts on the formation of sulfate aerosol and hence the lifetime and distribution of SO2.

Publications Copernicus
Download
Short summary
Stabilised Criegee intermediates (SCIs) are formed in the reaction of alkenes with ozone, both of which are ubiquitous throughout the troposphere. We determine the fate and global distribution of SCI from monoterpene ozonolysis. One major fate of SCI is reaction with H2O, but for a fraction of SCIs, unimolecular reactions dominate. Concentrations of SCIs are high enough regionally to play a key role in the conversion of sulfur dioxide to aerosol, affecting air quality and climate.
Stabilised Criegee intermediates (SCIs) are formed in the reaction of alkenes with ozone, both...
Citation
Share