Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Zhang, Q., Sun,
Y.,
Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B.,
Alfarra, R., Prévôt, A. S. H., Dommen, J., Duplissy, J., Metzger, A.,
Baltensperger,U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary,
and ambient organic aerosols with High Resolution Time-of-Flight Aerosol Mass
Spectrometry, Environ. Sci. Tech., 42, 4478–4485, 2008.
Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F.,
Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R.,
Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M.,
Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J.,
Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P.,
Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis
during MILAGRO using high resolution aerosol mass spectrometry at the urban
supersite (T0) – Part 1: Fine particle composition and organic source
apportionment, Atmos. Chem. Phys., 9, 6633–6653,
https://doi.org/10.5194/acp-9-6633-2009, 2009.
An, W. J., Pathak, R. K., Lee, B. H., and Pandis, S. N.: Aerosol volatility
measurement using an improved thermodenuder: Application to secondary organic
aerosol, J. Aerosol Sci., 38, 305–314, 2007.
Asa-Awuku, A., Engelhart, G. J., Lee, B. H., Pandis, S. N., and Nenes, A.:
Relating CCN activity, volatility, and droplet growth kinetics of
β-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 9,
795–812, https://doi.org/10.5194/acp-9-795-2009, 2009.
Bretti, C., Crea, F., Foti, C., and Sammartano, S.: Solubility and activity
coefficients of acidic and basic nonelectrolytes in aqueous salt solutions.
2. Solubility and activity coefficients of suberic, azelaic, and sebacic
acids in NaCl(aq), (CH3)4NCl(aq), and (C2H5)4NI(aq) at
different ionic strengths and at t = 25 ∘C, J. Chem. Eng.
Data, 51, 1660–1667, 2006.
Budisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Marth, W. J.,
Baumann, K., Edgerton, E. S., Shaw, S. L., Knipping, E. M., Worsnop, D. R.,
Jayne, J. T., Gold, A., and Surratt, J. D.: Real-time continuous
characterization of secondary organic aerosol derived from isoprene
epoxydiols in downtown Atlanta, Georgia, using the Aerodyne aerosol chemical
speciation monitor, Environ. Sci. Technol., 47, 5686–5694, 2013.
Budisulistiorini, S. H., Nenes, A., Carlton, A. G., Surratt, J. D., McNeill,
V. F., and Pye, H. O. T.: Simulating aqueous-phase Isoprene-Epoxydiol (IEPOX)
secondary organic aerosol production during the 2013 Southern Oxidant and
Aerosol Study (SOAS), Environ. Sci. Tech., 51, 5026–5034, 2017.
Burtscher, H., Baltensperger, U., Bukowiecki, N., Cohn, P., Huglin, C., Mohr,
M., Matter, U., Nyeki S., Schmatloch V., Streit, N., and Weingartner, E.:
Separation of volatile and non-volatile aerosol fractions by
thermodesorption: Instrumental development and applications, J. Aerosol Sci.,
32, 427–442, 2001.
Cain, K. P. and Pandis, S. N.: A technique for the measurement of organic
aerosol hygroscopicity, oxidation level, and volatility distributions, Atmos.
Meas. Tech., 10, 4865–4876, https://doi.org/10.5194/amt-10-4865-2017,
2017.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H.,
Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K.
R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.:
Elemental ratio measurements of organic compounds using aerosol mass
spectrometry: characterization, improved calibration, and implications,
Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015,
2015.
Cappa, C. D. and Jimenez, J. L.: Quantitative estimates of the volatility of
ambient organic aerosol, Atmos. Chem. Phys., 10, 5409–5424,
https://doi.org/10.5194/acp-10-5409-2010, 2010.
Carlton, A. G., de Gouw, J., Jimenez, J. L., Ambrose, J. L., Attwood, A. R.,
Brown, S., Baker, K. R., Brock, C., Cohen, R. C., Edgerton, S., Farkas, C.,
Farmer, D., Goldstein, A. H., Gratz, L., Guenther, A., Hunt, S., Jaeglé,
L., Jaffe, D. A., Mak, J., McClure, C., Nenes, A., Nguyen, T. K., Pierce, J.
R., de Sa, S., Selin, N. E., Shah, V., Shaw, S., Shepson, P. B., Song, S.,
Stutz, J., Surratt, J., Turpin, B. J., Warneke, C., Washenfelder, R. A.,
Wennberg, P. O., and Zhou, X.: Synthesis of the Southeast Atmosphere Studies:
Investigating Fundamental Atmospheric Chemistry Questions, B. Am. Meteor.
Soc., 99, 547–567, 2018.
Cerully, K. M., Hite, J., McLaughlin, M., and Nenes, A.: Towards the
determination of joint volatility-hygroscopicity distributions: instrument
development and response characterization for single-component aerosol,
Aerosol. Sci. Tech., 48, 296–312, 2014.
Cerully, K. M., Bougiatioti, A., Hite Jr., J. R., Guo, H., Xu, L., Ng, N. L.,
Weber, R., and Nenes, A.: On the link between hygroscopicity, volatility, and
oxidation state of ambient and water-soluble aerosols in the southeastern
United States, Atmos. Chem. Phys., 15, 8679–8694,
https://doi.org/10.5194/acp-15-8679-2015, 2015.
Chang, R. Y.-W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J.,
Sjostedt, S. J., Leaitch, W. R., and Abbatt, J. P. D.: The hygroscopicity
parameter (κ) of ambient organic aerosol at a field site subject to
biogenic and anthropogenic influences: relationship to degree of aerosol
oxidation, Atmos. Chem. Phys., 10, 5047–5064,
https://doi.org/10.5194/acp-10-5047-2010, 2010.
Chen, N. H. and Othmer, D. F.: New generalized equation for gas diffusion
coefficient, J. Chem. Eng. Data, 7, 37–41, 1962.
Chen, Q., Farmer, D. K., Rizzo, L. V., Pauliquevis, T., Kuwata, M., Karl, T.
G., Guenther, A., Allan, J. D., Coe, H., Andreae, M. O., Pöschl, U.,
Jimenez, J. L., Artaxo, P., and Martin, S. T.: Submicron particle mass
concentrations and sources in the Amazonian wet season (AMAZE-08), Atmos.
Chem. Phys., 15, 3687–3701, https://doi.org/10.5194/acp-15-3687-2015, 2015.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,
K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin,
R., Morawska, L., Pope III,C. A., Shin, H., Straif, K., Shaddick, G., Thomas,
M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and
Forouzanfar, M. F.: Estimates and 25-year trends of the global burden of
disease attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, The Lancet, 389, 1907–1918, 2017.
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico,
R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F.,
Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A.,
Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R.,
Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime
aerosol chemical composition and source apportionment of the organic fraction
in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981,
https://doi.org/10.5194/acp-13-961-2013, 2013.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K., Worsnop, D.
R., and Jimenez, J. L.: Field-Deployable, High-Resolution, Time-of-Flight
Aerosol Mass Spectrometer, Anal. Chem., 78, 8281–8289, 2006.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
Partitioning, Dilution, and Chemical Aging of Semivolatile Organics, Environ.
Sci. Tech., 40, 2635–2643, 2006.
Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.: A
two-dimensional volatility basis set – Part 2: Diagnostics of
organic-aerosol evolution, Atmos. Chem. Phys., 12, 615–634,
https://doi.org/10.5194/acp-12-615-2012, 2012.
Faulhaber, A. E., Thomas, B. M., Jimenez, J. L., Jayne, J. T., Worsnop, D.
R., and Ziemann, P. J.: Characterization of a thermodenuder-particle beam
mass spectrometer system for the study of organic aerosol volatility and
composition, Atmos. Meas. Tech., 2, 15–31,
https://doi.org/10.5194/amt-2-15-2009, 2009.
Florou, K., Papanastasiou, D. K., Pikridas, M., Kaltsonoudis, C., Louvaris,
E., Gkatzelis, E., Patoulias, D., Mihalopoulos, N., and Pandis, S. N.: The
contribution of wood burning and other pollution sources to wintertime
organic aerosol levels in two Greek cities, Atmos. Chem. Phys., 17,
3145–3163, https://doi.org/10.5194/acp-17-3145-2017, 2017.
Frosch, M., Bilde, M., Nenes, A., Praplan, A. P., Jurányi, Z., Dommen,
J., Gysel, M., Weingartner, E., and Baltensperger, U.: CCN activity and
volatility of β-caryophyllene secondary organic aerosol, Atmos. Chem.
Phys., 13, 2283–2297, https://doi.org/10.5194/acp-13-2283-2013, 2013.
Fuchs, N. A. and Sutugin, A. G.: Highly Dispersed Aerosols. Ann Arbor Science
Publishers, Ann Arbor, London, p. 105, 1970.
Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr., J.
R., Carlton, A. G., Lee, S.-H., Bergin, M. H., Ng, N. L., Nenes, A., and
Weber, R. J.: Fine-particle water and pH in the southeastern United States,
Atmos. Chem. Phys., 15, 5211–5228, https://doi.org/10.5194/acp-15-5211-2015,
2015.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D.,
Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H.,
Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.
E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel,
Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The formation, properties and impact of
secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys.,
9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hu, W., Palm, B. B., Day, D. A., Campuzano-Jost, P., Krechmer, J. E., Peng,
Z., de Sá, S. S., Martin, S. T., Alexander, M. L., Baumann, K., Hacker, L.,
Kiendler-Scharr, A., Koss, A. R., de Gouw, J. A., Goldstein, A. H., Seco, R.,
Sjostedt, S. J., Park, J.-H., Guenther, A. B., Kim, S., Canonaco, F.,
Prévôt, A. S. H., Brune, W. H., and Jimenez, J. L.: Volatility and
lifetime against OH heterogeneous reaction of ambient
isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA), Atmos.
Chem. Phys., 16, 11563–11580, https://doi.org/10.5194/acp-16-11563-2016,
2016.
Huffman, J. A., Docherty, K. S., Aiken, A. C., Cubison, M. J., Ulbrich, I.
M., DeCarlo, P. F., Sueper, D., Jayne, J. T., Worsnop, D. R., Ziemann, P. J.,
and Jimenez, J. L.: Chemically-resolved aerosol volatility measurements from
two megacity field studies, Atmos. Chem. Phys., 9, 7161–7182,
https://doi.org/10.5194/acp-9-7161-2009, 2009.
IARC (International Agency for Research on Cancer), Outdoor Air Pollution,
IARC Monogr. Eval. Carcinog. Risks Hum., 109, 1–454, 2016.
IPCC (Intergovernmental Panel on Climate Change): Climate change 2013: The
Physical Science Basis, Cambridge University Press, Cambridge, 2013.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A.
C., Docherty, K. D., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R.,Wood, E. C., Kolb, C. E., Baltensperger, U., and Worsnop, D.
R.: Evolution of organic aerosols in the atmosphere, Science, 326,
1525–1529, 2009.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J.,
Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J.,
Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat,
G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E.,
Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate
modelling: a review, Atmos. Chem. Phys., 5, 1053–1123,
https://doi.org/10.5194/acp-5-1053-2005, 2005.
Karnezi, E., Riipinen, I., and Pandis, S. N.: Measuring the atmospheric
organic aerosol volatility distribution: a theoretical analysis, Atmos. Meas.
Tech., 7, 2953–2965, https://doi.org/10.5194/amt-7-2953-2014, 2014.
Kostenidou, E., Florou, K., Kaltsonoudis, C., Tsiflikiotou, M., Vratolis, S.,
Eleftheriadis, K., and Pandis, S. N.: Sources and chemical characterization
of organic aerosol during the summer in the eastern Mediterranean, Atmos.
Chem. Phys., 15, 11355–11371, https://doi.org/10.5194/acp-15-11355-2015,
2015.
Kostenidou, E., Karnezi, E., Kolodziejczyk, A., Szmigielski, R., and Pandis,
S. N.: Physical and chemical properties of 3-methyl-1,2,3-butanetricarboxylic
acid (MBTCA) aerosol, Environ. Sci. Tech., 52, 1150–1155, 2018.
Kuwata, M., Kondo, Y., Mochida, M., Takegawa, N., and Kawamura, K.:
Dependence of CCN activity of less volatile particles on the amount of
coating observed in Tokyo, J. Geophys. Res., 112, D11207,
doi:10.1029/2006JD007758, 2007.
Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C.,
and Prévôt, A. S. H.: Source apportionment of submicron organic
aerosols at an urban site by factor analytical modeling of aerosol mass
spectra, Atmos. Chem. Phys., 7, 1503–1522,
https://doi.org/10.5194/acp-7-1503-2007, 2007.
Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C.,
Szidat, S., Wehrli, M. N., Wacker, L., Weimer, S., Caseiro, A., Puxbaum, J.,
and Prévôt, A. S. H.: Source attribution of submicron organic
aerosols during wintertime inversions by advanced factor analysis of aerosol
mass spectra, Environ. Sci. Tech., 42, 214–220, 2008.
Lathem, T. L., Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Cubison,
M. J., Hecobian, A., Jimenez, J. L., Weber, R. J., Anderson, B. E., and
Nenes, A.: Analysis of CCN activity of Arctic aerosol and Canadian biomass
burning during summer 2008, Atmos. Chem. Phys., 13, 2735–2756,
https://doi.org/10.5194/acp-13-2735-2013, 2013.
Lee, B. H., Kostenidou, E., Hildebrandt, L. Riipinen, I., Engelhart, G. J.,
Mohr, C., DeCarlo, P. F., Mihalopoulos, N., Prevot, A. S. H., Baltensperger,
U., and Pandis, S. N.: Measurement of the ambient organic aerosol volatility
distribution: application during the Finokalia Aerosol Measurement Experiment
(FAME- 2008), Atmos. Chem. Phys., 10, 12149–12160,
https://doi.org/10.5194/acp-10-12149-2010, 2010.
Lee, B. H., Pierce, J. R., Engelhart, G. J., and Pandis, S. N.: Volatility of
secondary organic aerosol from the ozonolysis of monoterpenes, Atmos.
Environ., 45, 2443–2452, 2011.
Liao, H., Henze, D. K., Seinfeld, J. H., Wu, S., and Mickley, L. J.: Biogenic
secondary organic aerosol over the United States: Comparison of
climatological simulations with observations, J. Geophys. Res., 112, D06201,
doi:10.1029/2006JD007813, 2007.
Lopez-Hilfiker, F. D., Mohr, C., D'Ambro, E. L., Lutz, A., Riedel, T. P.,
Gaston, C. J., Iyer, S., Zhang, X., Gold, A., Surratt, J. D., Lee, B. H.,
Kurten, T., Hu, W. W., Jimenez, J., Hallquist, M., and Thornton, J. A.:
Molecular composition and volatility of organic aerosol in the Southeastern
U.S.: Implications for IEPOX derived SOA, Environ. Sci. Tech., 50,
2200–2209, 2016.
Louvaris, E., Florou, K., Karnezi, E., Papanastasiou, D. K., Gkatzelis, G,
I., and Pandis, S. N.: Volatility of source apportioned wintertime organic
aerosol in the city of Athens, Atmos. Environ., 158, 138–147, 2017.
Meyer, N. K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner,
E., Alfarra, M. R., Prevot, A. S. H., Fletcher, C., Good, N., McFiggans, G.,
Jonsson, Å. M., Hallquist, M., Baltensperger, U., and Ristovski, Z. D.:
Analysis of the hygroscopic and volatile properties of ammonium sulphate
seeded and unseeded SOA particles, Atmos. Chem. Phys., 9, 721–732,
https://doi.org/10.5194/acp-9-721-2009, 2009.
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.:
Evaluation of composition – dependent collection efficiencies for the
Aerodyne Aerosol Mass Spectrometer using field data, Aerosol Sci. Technol.,
46, 258–271, 2012.
Nakao, S.: Why would apparent κ linearly change with O∕C? Assessing
the role of volatility, solubility, and surface activity of organic aerosols,
Aerosol Sci. Tech., 51, 1377–1388, 2017.
National Academies of Sciences, Engineering, and Medicine (NASEM): The Future
of Atmospheric Chemistry Research: Remembering Yesterday, Understanding
Today, Anticipating Tomorrow Washington, DC, The National Academies Press,
doi:10.17226/235730, 2016.
Paatero, P. and Tapper, U.: Positive matrix factorization – a nonnegative
factor model with optimal utilization of error-estimates of data values,
Environmetrics, 5, 111–126, 1994.
Paciga, A., Karnezi, E., Kostenidou, E., Hildebrandt, L., Psichoudaki, M.,
Engelhart, G. J., Lee, B.-H., Crippa, M., Prévôt, A. S. H.,
Baltensperger, U., and Pandis, S. N.: Volatility of organic aerosol and its
components in the megacity of Paris, Atmos. Chem. Phys., 16, 2013–2023,
https://doi.org/10.5194/acp-16-2013-2016, 2016.
Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K.,
Thurston, G. D.: Lung cancer, cardiopulmonary mortality, and long-term
exposure to fine particulate air pollution, JAMA, 287, 1132–1141, 2002.
Rastak, N., A. Pajunola, Navarro, J. C. A., Ma, J., Song, M., Partridge, D.
G., Kirkevåg, A., Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A.,
Cerully, K., Bougiatioti, A., Liu, P., Krejci, R., Petäjä, T., Percival,
C., Davidovits, P., Worsnop, D. R., Ekman, A. M. L., Nenes, A., Martin, S.,
Jimenez, J. L., Collins, D. R., Topping, D. O., Bertram, A. K., Zuend, A.,
Virtanen, A., and Riipinen, I.: Microphysical explanation of the RH-dependent
water affinity of biogenic organic aerosol and its importance for climate,
Geoph. Res. Lett., 44, 5167–5177, doi:10.102/2017GL073056, 2017.
Riipinen, I., Pierce, J. R., Donahue, N. M., and Pandis, S. N.: Equilibration
time scales of organic aerosol inside thermodenuders: Evaporation kinetics
versus thermodynamics, Atmos. Environ., 44, 597–607, 2010.
Roberts, G. C. and Nenes, A.: A continuous-flow streamwise thermal-gradient
CCN chamber for atmospheric measurements, Aerosol Sci. Tech., 39, 206–221,
2005.
Saha, P. K. and Grieshop, A. P.: Exploring divergent volatility properties
from yield and thermodenuder measurements of secondary organic aerosol from
α-pinene ozonolysis, Environ. Sci. Tech., 50, 5740–5749, 2016.
Saha, P. K., Khlystov, A., and Grieshop, A. P.: Determining aerosol
volatility parameters using a “dual themodenuder” system: Application to
laboratory-generated organic aerosols, Aerosol Sci. Tech., 49, 620–632,
2015.
Saha, P. K., Khlystov, A., Yahya, K., Zhang, Y., Xu, L., Ng, N. L., and
Grieshop, A. P.: Quantifying the volatility of organic aerosol in the
southeastern US, Atmos. Chem. Phys., 17, 501–520,
https://doi.org/10.5194/acp-17-501-2017, 2017.
Saleh, R., Walkerb, J., and Khlystov, A.: Determination of saturation
pressure and enthalpy of vaporization of semi-volatile aerosols: The
integrated volume method, Aerosol Sci., 39, 876–887, 2008.
Saleh, R., Khlystov, A., and Shihadeh, A.: Effect of aerosol generation
method on measured saturation pressure and enthalpy of vaporization for
dicarboxylic acids aerosol, Aerosol Sci. Tech., 44, 302–307, 2010.
Saleh, R., Shihadeh, A., and Khlystov, A.: On transport phenomena and
equilibration time scales in thermodenuders, Atmos. Meas. Tech., 4, 571–581,
https://doi.org/10.5194/acp-11-571-2011, 2011.
Saxena, P. and Hildemann, L.: Water-soluble organics in atmospheric
particles: a critical view of the literature and application of
thermodynamics to identify candidate compounds. J. Atmos. Chem., 24, 57–109,
1996.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 21, 5781–5790, 2016.
Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M.
J., Mann, G. W., Zhang, Q., Canagaratna, M. R., Allan, J., Coe, H.,
McFiggans, G., Rap, A., and Forster, P.: Aerosol mass spectrometer constraint
on the global secondary organic aerosol budget, Atmos. Chem. Phys., 11,
12109–12136, https://doi.org/10.5194/acp-11-12109-2011, 2011.
Thalman, R., de Sá, S. S., Palm, B. B., Barbosa, H. M. J., Pöhlker, M. L.,
Alexander, M. L., Brito, J., Carbone, S., Castillo, P., Day, D. A., Kuang,
C., Manzi, A., Ng, N. L., Sedlacek III, A. J., Souza, R., Springston, S.,
Watson, T., Pöhlker, C., Pöschl, U., Andreae, M. O., Artaxo, P., Jimenez, J.
L., Martin, S. T., and Wang, J.: CCN activity and organic hygroscopicity of
aerosols downwind of an urban region in central Amazonia: seasonal and diel
variations and impact of anthropogenic emissions, Atmos. Chem. Phys., 17,
11779–11801, https://doi.org/10.5194/acp-17-11779-2017, 2017.
Tritscher, T., Dommen, J., DeCarlo, P. F., Gysel, M., Barmet, P. B., Praplan,
A. P., Weingartner, E., Prévôt, A. S. H., Riipinen, I., Donahue, N.
M., and Baltensperger, U.: Volatility and hygroscopicity of aging secondary
organic aerosol in a smog chamber, Atmos. Chem. Phys., 11, 11477–11496,
https://doi.org/10.5194/acp-11-11477-2011, 2011.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez,
J. L.: Interpretation of organic components from Positive Matrix
Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9,
2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
Vesala, T., Kulmala, M., Rudolf, R., Vrtala, A., and Wagner, P. E.: Models
for condensational growth and evaporation of binary aerosol particles, J.
Aerosol Sci., 28, 565–598, 1997.
Weber, R. J., Orsini, D., Daun, Y., Lee, Y.-N., Klotz, P., and Brechtel, F.:
A particle-into-liquid collector for rapid measurements of aerosol chemical
composition, Aerosol Sci. Tech., 35, 718–727, 2001.
Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K, M.,
Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K.,
Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee,
S.-H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of anthropogenic
emissions on aerosol formation from isoprene and monoterpenes in the
Southeastern United States, P. Natl. Acad. Sci. USA, 112, 37–42, 2015a.
Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol
characterization over the southeastern United States using High-Resolution
Aerosol Mass Spectrometry: spatial and seasonal variation of aerosol
composition and sources with a focus on organic nitrates, Atmos. Chem. Phys.,
15, 7307–7336, https://doi.org/10.5194/acp-15-7307-2015, 2015b.
Xu, L., Middlebrook, A. M., Liao, J., de Gouw, J. A., Guo, H., Weber, R. J.,
Nenes, A., Lopez?Hilfiker, F. D., Lee, B. H., Thornton, J. A., Brock, C. A.,
Neuman, J., A., Nowak, J. B., Pollack, I. B., Welti, A., Graus, M., Warneke,
C., and Ng, N. L.: Enhanced formation of isoprene-derived organic aerosol in
power plant plumes during Southeast Nexus (SENEX), J. Geophys. Res., 121,
11137–11153, 2016a.
Xu, L., Williams, L. R., Young, D. E., Allan, J. D., Coe, H., Massoli, P.,
Fortner, E., Chhabra, P., Herndon, S., Brooks, W. A., Jayne, J. T., Worsnop,
D. R., Aiken, A. C., Liu, S., Gorkowski, K., Dubey, M. K., Fleming, Z. L.,
Visser, S., Prévôt, A. S. H., and Ng, N. L.: Wintertime aerosol
chemical composition, volatility, and spatial variability in the greater
London area, Atmos. Chem. Phys., 16, 1139–1160,
https://doi.org/10.5194/acp-16-1139-2016, 2016b.
Xu, L., Guo, H., Weber, R. J., and Ng, N. L.: Chemical characterization of
water soluble soluble organic aerosol in contrasting rural and urban
environments in the Southeastern United States, Environ. Sci. Tech., 51,
78–88, 2017.
Zhang, Q., Alfarra, M. R., Wornsop, D. R., Allan, J. D., Coe, H.,
Canagaratna, M., and Jimenez, J. L.: Deconvolution and quantification of
hydrocarbon-like and oxygenated organic aerosols based on aerosol mass
spectrometry, Environ. Sci. Tech., 39, 4938–4952, 2005.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H.,
Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L.,
Dzepina, K., Dunlea, E., Docherty, K., De Carlo, P. F., Salcedo, D., Onasch,
T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N.,
Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian,
K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res.
Lett., 34, L13801, doi:10.1029/2007gl029979, 2007.