Articles | Volume 18, issue 7
https://doi.org/10.5194/acp-18-5199-2018
https://doi.org/10.5194/acp-18-5199-2018
Research article
 | 
17 Apr 2018
Research article |  | 17 Apr 2018

First simultaneous measurements of peroxyacetyl nitrate (PAN) and ozone at Nam Co in the central Tibetan Plateau: impacts from the PBL evolution and transport processes

Xiaobin Xu, Hualong Zhang, Weili Lin, Ying Wang, Wanyun Xu, and Shihui Jia

Related authors

Atmospheric NH3 in urban Beijing: long-term variations and implications for secondary inorganic aerosol control
Ziru Lan, Xiaoyi Zhang, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Jun Jin, Lingyan Wu, and Yangmei Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-375,https://doi.org/10.5194/egusphere-2024-375, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-643,https://doi.org/10.5194/egusphere-2024-643, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024,https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Reconstructed daily ground-level O3 in China over 2005–2021 for climatological, ecological, and health research
Chenhong Zhou, Fan Wang, Yike Guo, Cheng Liu, Dongsheng Ji, Yuesi Wang, Xiaobin Xu, Xiao Lu, Yan Wang, Gregory Carmichael, and Meng Gao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-187,https://doi.org/10.5194/essd-2022-187, 2022
Manuscript not accepted for further review
Short summary
Measurement report: Variations in surface SO2 and NOx mixing ratios from 2004 to 2016 at a background site in the North China Plain
Xueli Liu, Liang Ran, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Fan Dong, Di He, Liyan Zhou, Qingfeng Shi, and Yao Wang
Atmos. Chem. Phys., 22, 7071–7085, https://doi.org/10.5194/acp-22-7071-2022,https://doi.org/10.5194/acp-22-7071-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024,https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024,https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Reanalysis of NOAA H2 observations: implications for the H2 budget
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024,https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024,https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024,https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary

Cited articles

Chen, B., Xu, X. D., Yang, S., and Zhao, T. L.: Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach, Atmos. Chem. Phys., 12, 5827–5839, https://doi.org/10.5194/acp-12-5827-2012, 2012.
Chen, X., An, J. A., Su, Z., Torre, L., Kelder, H., Peet, J., Ma, Y., and Fu, R.: The Deep Atmospheric Boundary Layer and Its Significance to the Stratosphere and Troposphere Exchange over the Tibetan Plateau, PloS One, 8, e56909, https://doi.org/10.1371/journal.pone.0056909, 2013.
Cong, Z. Y., Kang, S. C., Liu, X. D., and Wang, G. F.: Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season, Atmos. Environ., 41, 1180–1187, 2007.
Cong, Z. Y., Kang, S., Smirnov, A., and Holben, B.: Aerosol optical properties at Nam Co, a remote site in central Tibetan Plateau, Atmos. Res., 92, 42–48, 2009.
Download
Short summary
We present the first simultaneous PAN and O3 measurements from the central Tibetan Plateau. Both gases showed unique diurnal cycles with steep rises in the early morning and broader daytime platforms, which is attributed to the PBL evolution. Some high PAN and O3 episodes were observed and caused either by long-range transport of pollutants from south Asia or by downward transport of air masses from the upper troposphere, indicating the dynamic impacts on tropospheric chemistry over the Tibet.
Altmetrics
Final-revised paper
Preprint