Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 7 | Copyright

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Atmos. Chem. Phys., 18, 4477-4496, 2018
https://doi.org/10.5194/acp-18-4477-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Apr 2018

Research article | 04 Apr 2018

Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring–summer transition in May 2014

Paul Herenz1, Heike Wex1, Silvia Henning1, Thomas Bjerring Kristensen1,a, Florian Rubach2, Anja Roth2, Stephan Borrmann2, Heiko Bozem3, Hannes Schulz4, and Frank Stratmann1 Paul Herenz et al.
  • 1Leibniz Institute for Tropospheric Research, Leipzig, Germany
  • 2Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • 3Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
  • 4Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
  • anow at: Division of Nuclear Physics, Lund University, Box 118, Lund 22100, Sweden

Abstract. Within the framework of the RACEPAC (Radiation–Aerosol–Cloud Experiment in the Arctic Circle) project, the Arctic aerosol, arriving at a ground-based station in Tuktoyaktuk (Mackenzie River delta area, Canada), was characterized during a period of 3 weeks in May 2014. Basic meteorological parameters and particle number size distributions (PNSDs) were observed and two distinct types of air masses were found. One type were typical Arctic haze air masses, termed accumulation-type air masses, characterized by a monomodal PNSD with a pronounced accumulation mode at sizes above 100nm. These air masses were observed during a period when back trajectories indicate an air mass origin in the north-east of Canada. The other air mass type is characterized by a bimodal PNSD with a clear minimum around 90 nm and with an Aitken mode consisting of freshly formed aerosol particles. Back trajectories indicate that these air masses, termed Aitken-type air masses, originated from the North Pacific. In addition, the application of the PSCF receptor model shows that air masses with their origin in active fire areas in central Canada and Siberia, in areas of industrial anthropogenic pollution (Norilsk and Prudhoe Bay Oil Field) and the north-west Pacific have enhanced total particle number concentrations (NCN). Generally, NCN ranged from 20 to 500cm−3, while cloud condensation nuclei (CCN) number concentrations were found to cover a range from less than 10 up to 250cm−3 for a supersaturation (SS) between 0.1 and 0.7%. The hygroscopicity parameter κ of the CCN was determined to be 0.23 on average and variations in κ were largely attributed to measurement uncertainties.

Furthermore, simultaneous PNSD measurements at the ground station and on the Polar 6 research aircraft were performed. We found a good agreement of ground-based PNSDs with those measured between 200 and 1200m. During two of the four overflights, particle number concentrations at 3000m were found to be up to 20 times higher than those measured below 2000m; for one of these two flights, PNSDs measured above 2000m showed a different shape than those measured at lower altitudes. This is indicative of long-range transport from lower latitudes into the Arctic that can advect aerosol from different regions in different heights.

Download & links
Publications Copernicus
Special issue
Download
Short summary
The Arctic climate is changing much faster than other regions on Earth. Hence, it is necessary to investigate the processes that are liable for this phenomena and to document the current situation in the Arctic. Therefore, we measured the number and also the size of aerosol particles. It turned out that we captured the transition from the Arctic spring to the Arctic summer and that the according air masses show differences in particle properties. Also, the particles have a low water receptivity.
The Arctic climate is changing much faster than other regions on Earth. Hence, it is necessary...
Citation
Share