Articles | Volume 18, issue 7
https://doi.org/10.5194/acp-18-4425-2018
https://doi.org/10.5194/acp-18-4425-2018
Research article
 | 
03 Apr 2018
Research article |  | 03 Apr 2018

Effects of convective ice evaporation on interannual variability of tropical tropopause layer water vapor

Hao Ye, Andrew E. Dessler, and Wandi Yu

Related authors

Exploring ozone variability in the upper troposphere and lower stratosphere using dynamical coordinates
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-144,https://doi.org/10.5194/egusphere-2024-144, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
A simple model to assess the impact of gravity waves on ice-crystal populations in the tropical tropopause layer
Milena Corcos, Albert Hertzog, Riwal Plougonven, and Aurélien Podglajen
Atmos. Chem. Phys., 23, 6923–6939, https://doi.org/10.5194/acp-23-6923-2023,https://doi.org/10.5194/acp-23-6923-2023, 2023
Short summary
Simulation of convective moistening of the extratropical lower stratosphere using a numerical weather prediction model
Zhipeng Qu, Yi Huang, Paul A. Vaillancourt, Jason N. S. Cole, Jason A. Milbrandt, Man-Kong Yau, Kaley Walker, and Jean de Grandpré
Atmos. Chem. Phys., 20, 2143–2159, https://doi.org/10.5194/acp-20-2143-2020,https://doi.org/10.5194/acp-20-2143-2020, 2020
Short summary
Convective hydration in the tropical tropopause layer during the StratoClim aircraft campaign: pathway of an observed hydration patch
Keun-Ok Lee, Thibaut Dauhut, Jean-Pierre Chaboureau, Sergey Khaykin, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 19, 11803–11820, https://doi.org/10.5194/acp-19-11803-2019,https://doi.org/10.5194/acp-19-11803-2019, 2019
Short summary
Lagrangian simulation of ice particles and resulting dehydration in the polar winter stratosphere
Ines Tritscher, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 543–563, https://doi.org/10.5194/acp-19-543-2019,https://doi.org/10.5194/acp-19-543-2019, 2019
Short summary
Technical note: A noniterative approach to modelling moist thermodynamics
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 17, 15037–15043, https://doi.org/10.5194/acp-17-15037-2017,https://doi.org/10.5194/acp-17-15037-2017, 2017
Short summary

Cited articles

Anderson, J. G., Wilmouth, D. M., Smith, J. B., and Sayres, D. S.: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337, 835–839, 2012. a
Avery, M. A., Davis, S. M., Rosenlof, K. H., Ye, H., and Dessler, A. E.: Large anomalies in lower stratospheric water vapour and ice during the 2015–2016 El Niño, Nat. Geosci., 10, 405–409, 2017. a, b, c, d, e, f
Bacmeister, J. T., Suarez, M. J., and Robertson, F. R.: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM, J. Atmos. Sci., 63, 3383–3403, 2006. a
Barahona, D., Molod, A., Bacmeister, J., Nenes, A., Gettelman, A., Morrison, H., Phillips, V., and Eichmann, A.: Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5), Geosci. Model Dev., 7, 1733–1766, https://doi.org/10.5194/gmd-7-1733-2014, 2014. a
Bergman, J. W., Jensen, E. J., Pfister, L., and Yang, Q.: Seasonal differences of vertical-transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large-scale vertical ascent, and horizontal circulations, J. Geophys. Res.-Atmos., 117, D05302, https://doi.org/10.1029/2011JD016992, 2012. a
Download
Short summary
The deep convection in tropics can inject cloud ice into tropical tropopause layer (TTL), which moistens and increases water vapor there. We primarily study the spatial distribution of impacts from several physical processes on TTL water vapor from observations and trajectory model simulations. The analysis shows the potential moistening impact from evaporation of cloud ice on TTL water vapor. A chemistry–climate model is used to confirm the impact from evaporation of convective ice.
Altmetrics
Final-revised paper
Preprint