Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 18, 3619-3639, 2018
https://doi.org/10.5194/acp-18-3619-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
13 Mar 2018
Model simulations with COSMO-SPECS: impact of heterogeneous freezing modes and ice nucleating particle types on ice formation and precipitation in a deep convective cloud
Karoline Diehl1 and Verena Grützun2 1Institute of Atmospheric Physics, University of Mainz, Germany
2Institute of Meteorology, Hamburg, Germany
Abstract. In deep convective clouds, heavy rain is often formed involving the ice phase. Simulations were performed using the 3-D cloud resolving model COSMO-SPECS with detailed spectral microphysics including parameterizations of homogeneous and three heterogeneous freezing modes. The initial conditions were selected to result in a deep convective cloud reaching 14 km of altitude with strong updrafts up to 40 m s−1. At such altitudes with corresponding temperatures below −40 °C the major fraction of liquid drops freezes homogeneously. The goal of the present model simulations was to investigate how additional heterogeneous freezing will affect ice formation and precipitation although its contribution to total ice formation may be rather low. In such a situation small perturbations that do not show significant effects at first sight may trigger cloud microphysical responses. Effects of the following small perturbations were studied: (1) additional ice formation via immersion, contact, and deposition modes in comparison to solely homogeneous freezing, (2) contact and deposition freezing in comparison to immersion freezing, and (3) small fractions of biological ice nucleating particles (INPs) in comparison to higher fractions of mineral dust INP. The results indicate that the modification of precipitation proceeds via the formation of larger ice particles, which may be supported by direct freezing of larger drops, the growth of pristine ice particles by riming, and by nucleation of larger drops by collisions with pristine ice particles. In comparison to the reference case with homogeneous freezing only, such small perturbations due to additional heterogeneous freezing rather affect the total precipitation amount. It is more likely that the temporal development and the local distribution of precipitation are affected by such perturbations. This results in a gradual increase in precipitation at early cloud stages instead of a strong increase at later cloud stages coupled with approximately 50 % more precipitation in the cloud center. The modifications depend on the active freezing modes, the fractions of active INP, and the composition of the internal mixtures in the drops.
Citation: Diehl, K. and Grützun, V.: Model simulations with COSMO-SPECS: impact of heterogeneous freezing modes and ice nucleating particle types on ice formation and precipitation in a deep convective cloud, Atmos. Chem. Phys., 18, 3619-3639, https://doi.org/10.5194/acp-18-3619-2018, 2018.
Publications Copernicus
Download
Short summary
In deep convective clouds reaching altitudes of 14 km, heavy rain is often formed involving the ice phase. Ice nucleating particles (INPs) are responsible for heterogeneous freezing at middle and lower altitudes. Cloud model simulations indicate that INPs may effect a gradual increase in precipitation at early cloud stages instead of a strong increase at later cloud stages. Simultaneously, the local distribution of precipitation is changed, with more precipitation in the cloud center.
In deep convective clouds reaching altitudes of 14 km, heavy rain is often formed involving the...
Share