Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 5 | Copyright
Atmos. Chem. Phys., 18, 3321-3334, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Mar 2018

Research article | 07 Mar 2018

Assessment of emission scenarios for 2030 and impacts of black carbon emission reduction measures on air quality and radiative forcing in Southeast Asia

Didin Agustian Permadi1, Nguyen Thi Kim Oanh1, and Robert Vautard2 Didin Agustian Permadi et al.
  • 1Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathumthani 12120, Thailand
  • 2Laboratoire des Sciences du Climate de l'Environment (LSCE), Institut Pierre Simon Laplace (IPSL), Gif-sur-Yvette, France

Abstract. Our previously published paper (Permadi et al. 2018) focused on the preparation of emission input data and evaluation of WRF–CHIMERE performance in 2007. This paper details the impact assessment of the future (2030) black carbon (BC) emission reduction measures for Southeast Asia (SEA) countries on air quality, health and BC direct radiative forcing (DRF). The business as usual (BAU2030) projected emissions from the base year of 2007 (BY2007), assuming no intervention with the linear projection of the emissions based on the past activity data for Indonesia and Thailand and the sectoral GDP growth for other countries. The RED2030 featured measures to cut down emissions in major four source sectors in Indonesia and Thailand (road transport, residential cooking, industry, biomass open burning) while for other countries the Representative Concentration Pathway 8.5 (RCP8.5) emissions were assumed. WRF–CHIMERE simulated levels of aerosol species under BAU2030 and RED2030 for the modeling domain using the base year meteorology and 2030 boundary conditions from LMDZ-INCA. The extended aerosol optical depth module (AODEM) calculated the total columnar AOD and BC AOD for all scenarios with an assumption on the internal mixing state. Under RED2030, the health benefits were analyzed in terms of the number of avoided premature deaths associated with ambient PM2.5 reduction along with BC DRF reduction. Under BAU2030, the average number of the premature deaths per 100000 people in the SEA domain would increase by 30 from BY2007 while under RED2030 the premature deaths would be cut down (avoided) by 63 from RED2030. In 2007, the maximum annual average BC DRF in the SEA countries was 0.98Wm−2, which would increase to 2.0Wm−2 under BAU2030 and 1.4Wm−2 under RED2030. Substantial impacts on human health and BC DRF reduction in SEA could result from the emission measures incorporated in RED2030. Future works should consider other impacts, such as for agricultural crop production, and the cost–benefit analysis of the measures' implementation to provide relevant information for policy making.

Download & links
Publications Copernicus
Short summary
This research quantified impacts resulted in the future (2030) from emission reduction measures for Southeast Asia (SEA) countries. Emission scenarios were developed based on current policies in Indonesia and Thailand. Impacts were quantified in terms of the avoided number of premature death and reduction in radiative forcing resulted from the emission reduction measures.
This research quantified impacts resulted in the future (2030) from emission reduction measures...