Articles | Volume 18, issue 4
https://doi.org/10.5194/acp-18-3027-2018
https://doi.org/10.5194/acp-18-3027-2018
Technical note
 | 
02 Mar 2018
Technical note |  | 02 Mar 2018

Technical Note: Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: methodology and system evaluation

Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas Frank Koch, and Martin Heimann

Abstract. Atmospheric inversions are widely used in the optimization of surface carbon fluxes on a regional scale using information from atmospheric CO2 dry mole fractions. In many studies the prior flux uncertainty applied to the inversion schemes does not directly reflect the true flux uncertainties but is used to regularize the inverse problem. Here, we aim to implement an inversion scheme using the Jena inversion system and applying a prior flux error structure derived from a model–data residual analysis using high spatial and temporal resolution over a full year period in the European domain. We analyzed the performance of the inversion system with a synthetic experiment, in which the flux constraint is derived following the same residual analysis but applied to the model–model mismatch. The synthetic study showed a quite good agreement between posterior and true fluxes on European, country, annual and monthly scales. Posterior monthly and country-aggregated fluxes improved their correlation coefficient with the known truth by 7 % compared to the prior estimates when compared to the reference, with a mean correlation of 0.92. The ratio of the SD between the posterior and reference and between the prior and reference was also reduced by 33 % with a mean value of 1.15. We identified temporal and spatial scales on which the inversion system maximizes the derived information; monthly temporal scales at around 200 km spatial resolution seem to maximize the information gain.

Altmetrics
Final-revised paper
Preprint