Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 18, issue 4
Atmos. Chem. Phys., 18, 2381–2394, 2018
https://doi.org/10.5194/acp-18-2381-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 2381–2394, 2018
https://doi.org/10.5194/acp-18-2381-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Feb 2018

Research article | 19 Feb 2018

Temperature-(208–318 K) and pressure-(18–696 Torr) dependent rate coefficients for the reaction between OH and HNO3

Katrin Dulitz et al.
Related authors  
Temperature-dependent rate coefficients for the reactions of the hydroxyl radical with the atmospheric biogenics isoprene, alpha-pinene and delta-3-carene
Terry J. Dillon, Katrin Dulitz, Christoph B. M. Groß, and John N. Crowley
Atmos. Chem. Phys., 17, 15137–15150, https://doi.org/10.5194/acp-17-15137-2017,https://doi.org/10.5194/acp-17-15137-2017, 2017
Short summary
Related subject area  
Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Trapping of HCl and oxidised organic trace gases in growing ice at temperatures relevant to cirrus clouds
Matthias Kippenberger, Gerhard Schuster, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 19, 11939–11951, https://doi.org/10.5194/acp-19-11939-2019,https://doi.org/10.5194/acp-19-11939-2019, 2019
Short summary
Investigation of the α-pinene photooxidation by OH in the atmospheric simulation chamber SAPHIR
Michael Rolletter, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Hans-Peter Dorn, Xin Li, Anna Lutz, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 19, 11635–11649, https://doi.org/10.5194/acp-19-11635-2019,https://doi.org/10.5194/acp-19-11635-2019, 2019
Short summary
Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility
Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Ben H. Lee, Jiumeng Liu, Alla Zelenyuk, David Bell, Christopher D. Cappa, Taylor Helgestad, Ziyue Li, Alex Guenther, Jian Wang, Matthew Wise, Ryan Caylor, Jason D. Surratt, Theran Riedel, Noora Hyttinen, Vili-Taneli Salo, Galib Hasan, Theo Kurtén, John E. Shilling, and Joel A. Thornton
Atmos. Chem. Phys., 19, 11253–11265, https://doi.org/10.5194/acp-19-11253-2019,https://doi.org/10.5194/acp-19-11253-2019, 2019
Short summary
Kinetics of the OH + NO2 reaction: rate coefficients (217–333 K, 16–1200 mbar) and fall-off parameters for N2 and O2 bath gases
Damien Amedro, Arne J. C. Bunkan, Matias Berasategui, and John N. Crowley
Atmos. Chem. Phys., 19, 10643–10657, https://doi.org/10.5194/acp-19-10643-2019,https://doi.org/10.5194/acp-19-10643-2019, 2019
Short summary
Trends in N2O and SF6 mole fractions in archived air samples from Cape Meares, Oregon (USA), 1978–1996
Terry C. Rolfe and Andrew L. Rice
Atmos. Chem. Phys., 19, 8967–8977, https://doi.org/10.5194/acp-19-8967-2019,https://doi.org/10.5194/acp-19-8967-2019, 2019
Short summary
Cited articles  
Aloisio, S. and Francisco, J. S.: Structure and energetics of hydrogen bonded HOX-HNO3 complexes, J. Phys. Chem. A, 103, 6049–6053, 1999.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox, HOx, NOxand SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Biaume, F.: Nitric acid vapour absorption cross-section spectrum and its photodissociation in the stratosphere, J. Photochem., 2, 139–149, 1973–1974.
Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O. C., Vogel, A., Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and Burrows, J. P.: Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region, J. Photochem. Photobiol. A, 157, 167–184, https://doi.org/10.1016/s1010-6030(03)00062-5, 2003.
Brown, S. S., Talukdar, R. K., and Ravishankara, A. R.: Reconsideration of the rate constant for the reaction of hydroxyl radicals with nitric acid, J. Phys. Chem.-US, 103, 3031–3037, 1999.
Publications Copernicus
Download
Short summary
The reaction between the OH radical and HNO3 represents an important route for the release of NOx (NO and NO2) from HNO3, the most important NOx reservoir in many parts of the atmosphere. In our laboratory study, we have generated an extensive, high-quality set of rate coefficients for this reaction at different temperatures and pressures and used these to derive a new parameterisation of the rate coefficient for atmospheric modelling.
The reaction between the OH radical and HNO3 represents an important route for the release of...
Citation