Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
Volume 18, issue 4
Atmos. Chem. Phys., 18, 2381-2394, 2018
https://doi.org/10.5194/acp-18-2381-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 2381-2394, 2018
https://doi.org/10.5194/acp-18-2381-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Feb 2018

Research article | 19 Feb 2018

Temperature-(208–318 K) and pressure-(18–696 Torr) dependent rate coefficients for the reaction between OH and HNO3

Katrin Dulitz1,a, Damien Amedro1, Terry J. Dillon1,b, Andrea Pozzer1, and John N. Crowley1 Katrin Dulitz et al.
  • 1Division of Atmospheric Chemistry, Max-Planck-Institut für Chemie, 55128 Mainz, Germany
  • anow at: Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
  • bnow at: Department of Chemistry, University of York, York, UK

Abstract. Rate coefficients (k5) for the title reaction were obtained using pulsed laser photolytic generation of OH coupled to its detection by laser-induced fluorescence (PLP–LIF). More than 80 determinations of k5 were carried out in nitrogen or air bath gas at various temperatures and pressures. The accuracy of the rate coefficients obtained was enhanced by in situ measurement of the concentrations of both HNO3 reactant and NO2 impurity. The rate coefficients show both temperature and pressure dependence with a rapid increase in k5 at low temperatures. The pressure dependence was weak at room temperature but increased significantly at low temperatures. The entire data set was combined with selected literature values of k5 and parameterised using a combination of pressure-dependent and -independent terms to give an expression that covers the relevant pressure and temperature range for the atmosphere. A global model, using the new parameterisation for k5 rather than those presently accepted, indicated small but significant latitude- and altitude-dependent changes in the HNO3NOx ratio of between −6 and +6%. Effective HNO3 absorption cross sections (184.95 and 213.86nm, units of cm2molecule−1) were obtained as part of this work: σ213.86 = 4.52−0.12+0.23 × 10−19 and σ184.95 = 1.61−0.04+0.08 × 10−17.

Publications Copernicus
Download
Short summary
The reaction between the OH radical and HNO3 represents an important route for the release of NOx (NO and NO2) from HNO3, the most important NOx reservoir in many parts of the atmosphere. In our laboratory study, we have generated an extensive, high-quality set of rate coefficients for this reaction at different temperatures and pressures and used these to derive a new parameterisation of the rate coefficient for atmospheric modelling.
The reaction between the OH radical and HNO3 represents an important route for the release of...
Citation
Share