Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 24
Atmos. Chem. Phys., 18, 18149–18168, 2018
https://doi.org/10.5194/acp-18-18149-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 18149–18168, 2018
https://doi.org/10.5194/acp-18-18149-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Dec 2018

Research article | 21 Dec 2018

Attribution of recent increases in atmospheric methane through 3-D inverse modelling

Joe McNorton et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (16 Oct 2018)  Author's response
ED: Referee Nomination & Report Request started (24 Oct 2018) by Patrick Jöckel
RR by Anonymous Referee #1 (05 Dec 2018)
ED: Publish subject to minor revisions (review by editor) (05 Dec 2018) by Patrick Jöckel
AR by Joe McNorton on behalf of the Authors (10 Dec 2018)  Author's response    Manuscript
ED: Publish as is (10 Dec 2018) by Patrick Jöckel
Publications Copernicus
Download
Short summary
Since 2007 atmospheric methane (CH4) has been unexpectedly increasing following a 6-year hiatus. We have used an atmospheric model to attribute regional sources and global sinks of CH4 using observations for the 2003–2015 period. Model results show the renewed growth is best explained by decreased atmospheric removal, decreased biomass burning emissions, and an increased energy sector (mainly from Africa–Middle East and Southern Asia–Oceania) and wetland emissions (mainly from northern Eurasia).
Since 2007 atmospheric methane (CH4) has been unexpectedly increasing following a 6-year hiatus....
Citation