Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 23
Atmos. Chem. Phys., 18, 17705–17716, 2018
https://doi.org/10.5194/acp-18-17705-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 17705–17716, 2018
https://doi.org/10.5194/acp-18-17705-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Dec 2018

Research article | 13 Dec 2018

Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods

Liqing Hao et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Liqing Hao on behalf of the Authors (23 Nov 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (27 Nov 2018) by Fangqun Yu
RR by Anonymous Referee #1 (29 Nov 2018)
ED: Publish as is (03 Dec 2018) by Fangqun Yu
Publications Copernicus
Download
Short summary
An aerosol mass spectrometer was used to characterize aerosol chemical composition during new particle formation periods. The time profiles of mass concentrations and chemical composition of observed aerosol particles are subjected to joint effects of boundary layer dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During the nighttime, the increase in organic aerosol mass correlated well with the increase in condensed highly oxygenated organic molecules' mass.
An aerosol mass spectrometer was used to characterize aerosol chemical composition during new...
Citation