Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 23
Atmos. Chem. Phys., 18, 17637–17654, 2018
https://doi.org/10.5194/acp-18-17637-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 17637–17654, 2018
https://doi.org/10.5194/acp-18-17637-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Dec 2018

Research article | 12 Dec 2018

Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions

Quanyang Lu et al.
Related authors  
Simulation of organic aerosol formation during the CalNex study: updated mobile emissions and simplified secondary organic aerosol parameterization for intermediate volatility organic compounds
Quanyang Lu, Benjamin N. Murphy, Momei Qin, Peter J. Adams, Yunliang Zhao, Havala O. T. Pye, Christos Efstathiou, Chris Allen, and Allen L. Robinson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-986,https://doi.org/10.5194/acp-2019-986, 2019
Manuscript under review for ACP
Short summary
Related subject area  
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions
Christopher Y. Lim, David H. Hagan, Matthew M. Coggon, Abigail R. Koss, Kanako Sekimoto, Joost de Gouw, Carsten Warneke, Christopher D. Cappa, and Jesse H. Kroll
Atmos. Chem. Phys., 19, 12797–12809, https://doi.org/10.5194/acp-19-12797-2019,https://doi.org/10.5194/acp-19-12797-2019, 2019
Short summary
Chemical composition and hydrolysis of organic nitrate aerosol formed from hydroxyl and nitrate radical oxidation of α-pinene and β-pinene
Masayuki Takeuchi and Nga L. Ng
Atmos. Chem. Phys., 19, 12749–12766, https://doi.org/10.5194/acp-19-12749-2019,https://doi.org/10.5194/acp-19-12749-2019, 2019
Short summary
A review of experimental techniques for aerosol hygroscopicity studies
Mingjin Tang, Chak K. Chan, Yong Jie Li, Hang Su, Qingxin Ma, Zhijun Wu, Guohua Zhang, Zhe Wang, Maofa Ge, Min Hu, Hong He, and Xinming Wang
Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019,https://doi.org/10.5194/acp-19-12631-2019, 2019
Short summary
Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing
Zhenzhen Wang, Tao Wang, Hongbo Fu, Liwu Zhang, Mingjin Tang, Christian George, Vicki H. Grassian, and Jianmin Chen
Atmos. Chem. Phys., 19, 12569–12585, https://doi.org/10.5194/acp-19-12569-2019,https://doi.org/10.5194/acp-19-12569-2019, 2019
Short summary
Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals
Nadine Borduas-Dedekind, Rachele Ossola, Robert O. David, Lin S. Boynton, Vera Weichlinger, Zamin A. Kanji, and Kristopher McNeill
Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019,https://doi.org/10.5194/acp-19-12397-2019, 2019
Short summary
Cited articles  
Adelman, Z., Vukovich, J., and Carter, W.: Integration of the SAPRC Chemical Mechanism in the SMOKE Emissions Processor for the CMAQ/Models – 3 Airshed Model, available at: https://escholarship.org/uc/item/928332x8 (last access: 12 July 2018), 2005. 
Akihama, K., Takatori, Y., and Nakakita, K.: Effect of hydrocarbon molecular structure on diesel exhaust emissions, Toyota Central R&D Labs., Inc., Nagakute, Japan, 37, 46–52, 2002. 
Brezinsky, K.: The high-temperature oxidation of aromatic hydrocarbons, Prog. Energy Combust. Sci., 12, 1–24, https://doi.org/10.1016/0360-1285(86)90011-0, 1986. 
Cao, T., Durbin, T. D., Russell, R. L., Cocker, D. R., Scora, G., Maldonado, H., and Johnson, K. C.: Evaluations of in-use emission factors from off-road construction equipment, Atmos. Environ., 147, 234–245, https://doi.org/10.1016/j.atmosenv.2016.09.042, 2016a. 
Publications Copernicus
Download
Short summary
This work combines previously published data to illustrate the mechanics of emission from internal combustion engine sources. Engine exhaust can be decomposed into combustion "by-product", "unburned fuel" and "oil" modes. Intermediate and semi-volatile organic compounds are included to create comprehensive model-ready organic emission profiles. Gasoline and gas-turbine engine emissions are enriched in intermediate volatile organic compounds relative to unburned fuel.
This work combines previously published data to illustrate the mechanics of emission from...
Citation