Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 23
Atmos. Chem. Phys., 18, 17615–17635, 2018
https://doi.org/10.5194/acp-18-17615-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 17615–17635, 2018
https://doi.org/10.5194/acp-18-17615-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Dec 2018

Research article | 12 Dec 2018

Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes

Guangjie Zheng et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Guangjie Zheng on behalf of the Authors (09 Oct 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (17 Oct 2018) by Aijun Ding
RR by Anonymous Referee #2 (13 Nov 2018)
ED: Publish as is (14 Nov 2018) by Aijun Ding
Publications Copernicus
Download
Short summary
Here, we elucidate the key processes that drive marine boundary layer (MBL) aerosol size distribution in the eastern North Atlantic (ENA) using long-term measurements. The governing equations of particle concentration are established for different modes. Particles entrained from the free troposphere represent the major source of MBL cloud condensation nuclei (CCN), contributing both directly to CCN population and indirectly by supplying Aitken-mode particles that grow to CCN in the MBL.
Here, we elucidate the key processes that drive marine boundary layer (MBL) aerosol size...
Citation