Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 23
Atmos. Chem. Phys., 18, 17545–17572, 2018
https://doi.org/10.5194/acp-18-17545-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: ML-CIRRUS – the airborne experiment on natural cirrus...

Atmos. Chem. Phys., 18, 17545–17572, 2018
https://doi.org/10.5194/acp-18-17545-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 Dec 2018

Research article | 11 Dec 2018

The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe

Michael Weger et al.

Viewed

Total article views: 2,166 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,550 561 55 2,166 33 39
  • HTML: 1,550
  • PDF: 561
  • XML: 55
  • Total: 2,166
  • BibTeX: 33
  • EndNote: 39
Views and downloads (calculated since 02 Aug 2018)
Cumulative views and downloads (calculated since 02 Aug 2018)

Viewed (geographical distribution)

Total article views: 1,905 (including HTML, PDF, and XML) Thereof 1,881 with geography defined and 24 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (discussion paper)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (discussion paper)

No discussed metrics found.
Latest update: 24 Feb 2020
Publications Copernicus
Download
Short summary
The impact of desert dust on cloud formation is investigated for a major Saharan dust event over Europe by interactive regional dust modeling. Dust particles are very efficient ice-nucleating particles promoting the formation of ice crystals in clouds. The simulations show that the observed extensive cirrus development was likely related to the above-average dust load. The interactive dust–cloud feedback in the model significantly improves the agreement with aircraft and satellite observations.
The impact of desert dust on cloud formation is investigated for a major Saharan dust event over...
Citation