Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 23
Atmos. Chem. Phys., 18, 17371–17386, 2018
https://doi.org/10.5194/acp-18-17371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 17371–17386, 2018
https://doi.org/10.5194/acp-18-17371-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Dec 2018

Research article | 07 Dec 2018

Arctic ice clouds over northern Sweden: microphysical properties studied with the Balloon-borne Ice Cloud particle Imager B-ICI

Veronika Wolf et al.

Related authors

Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model
Mattia Righi, Johannes Hendricks, Ulrike Lohmann, Christof Gerhard Beer, Valerian Hahn, Bernd Heinold, Romy Heller, Martina Krämer, Michael Ponater, Christian Rolf, Ina Tegen, and Christiane Voigt
Geosci. Model Dev., 13, 1635–1661, https://doi.org/10.5194/gmd-13-1635-2020,https://doi.org/10.5194/gmd-13-1635-2020, 2020
Short summary
Microphysical properties and fall speed measurements of snow ice crystals using the Dual Ice Crystal Imager (D-ICI)
Thomas Kuhn and Sandra Vázquez-Martín
Atmos. Meas. Tech., 13, 1273–1285, https://doi.org/10.5194/amt-13-1273-2020,https://doi.org/10.5194/amt-13-1273-2020, 2020
Short summary
Aerosol and cloud top height information of Envisat MIPAS measurements
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020,https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020,https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
A Microphysics Guide to Cirrus – Part II: Climatologies of Clouds and Humidity from Observations
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-40,https://doi.org/10.5194/acp-2020-40, 2020
Preprint under review for ACP
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Statistical analysis of ice microphysical properties in tropical mesoscale convective systems derived from cloud radar and in situ microphysical observations
Emmanuel Fontaine, Alfons Schwarzenboeck, Delphine Leroy, Julien Delanoë, Alain Protat, Fabien Dezitter, John Walter Strapp, and Lyle Edward Lilie
Atmos. Chem. Phys., 20, 3503–3553, https://doi.org/10.5194/acp-20-3503-2020,https://doi.org/10.5194/acp-20-3503-2020, 2020
Short summary
Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region
Mary Kacarab, K. Lee Thornhill, Amie Dobracki, Steven G. Howell, Joseph R. O'Brien, Steffen Freitag, Michael R. Poellot, Robert Wood, Paquita Zuidema, Jens Redemann, and Athanasios Nenes
Atmos. Chem. Phys., 20, 3029–3040, https://doi.org/10.5194/acp-20-3029-2020,https://doi.org/10.5194/acp-20-3029-2020, 2020
Short summary
Conceptual model of diurnal cycle of low-level stratiform clouds over southern West Africa
Fabienne Lohou, Norbert Kalthoff, Bianca Adler, Karmen Babić, Cheikh Dione, Marie Lothon, Xabier Pedruzo-Bagazgoitia, and Maurin Zouzoua
Atmos. Chem. Phys., 20, 2263–2275, https://doi.org/10.5194/acp-20-2263-2020,https://doi.org/10.5194/acp-20-2263-2020, 2020
Short summary
The structure of turbulence and mixed-phase cloud microphysics in a highly supercooled altocumulus cloud
Paul A. Barrett, Alan Blyth, Philip R. A. Brown, and Steven J. Abel
Atmos. Chem. Phys., 20, 1921–1939, https://doi.org/10.5194/acp-20-1921-2020,https://doi.org/10.5194/acp-20-1921-2020, 2020
Short summary
Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level – Part 2: Ice-nucleating particles in air, cloud and seawater
Xianda Gong, Heike Wex, Manuela van Pinxteren, Nadja Triesch, Khanneh Wadinga Fomba, Jasmin Lubitz, Christian Stolle, Tiera-Brandy Robinson, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1451–1468, https://doi.org/10.5194/acp-20-1451-2020,https://doi.org/10.5194/acp-20-1451-2020, 2020
Short summary

Cited articles

Bailey, M. and Hallett, J.: Growth Rates and Habits of Ice Crystals between −20 to −70C, J. Atmos. Sci., 61, 514–544, https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2, 2004. a
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009JAS2883.1, 2009. a, b
Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ Measurement Challenges, Meteor. Mon., , 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017. a
Blum, U. and Fricke, K. H.: The Bonn University lidar at the Esrange: technical description and capabilities for atmospheric research, Ann. Geophys., 23, 1645–1658, https://doi.org/10.5194/angeo-23-1645-2005, 2005. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Publications Copernicus
Download
Short summary
Balloon-borne measurements of microphysical properties of Arctic ice clouds have been performed with an in situ particle imager and been analyzed for the first time with respect to how the ice particles have formed. Ice particle size, shape and number show large variations from cloud to cloud, which cannot be explained with local conditions only, and rather depend on conditions at cloud formation. Taking this into account when parametrizing ice cloud properties may improve retrievals and models.
Balloon-borne measurements of microphysical properties of Arctic ice clouds have been performed...
Citation