Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 3
Atmos. Chem. Phys., 18, 1629–1642, 2018
https://doi.org/10.5194/acp-18-1629-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Atmos. Chem. Phys., 18, 1629–1642, 2018
https://doi.org/10.5194/acp-18-1629-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Feb 2018

Research article | 05 Feb 2018

Maxwell–Stefan diffusion: a framework for predicting condensed phase diffusion and phase separation in atmospheric aerosol

Kathryn Fowler et al.

Viewed

Total article views: 1,690 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,131 518 41 1,690 21 42
  • HTML: 1,131
  • PDF: 518
  • XML: 41
  • Total: 1,690
  • BibTeX: 21
  • EndNote: 42
Views and downloads (calculated since 06 Jun 2017)
Cumulative views and downloads (calculated since 06 Jun 2017)

Viewed (geographical distribution)

Total article views: 1,664 (including HTML, PDF, and XML) Thereof 1,638 with geography defined and 26 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

Latest update: 05 Jun 2020
Publications Copernicus
Download
Short summary
This is the first time the Maxwell–Stefan framework has been applied to an atmospheric aerosol core–shell model and shows that there is a complex interplay between the viscous and solubility effects on aerosol composition. Understanding aerosol composition is essential to accurately model their interactions within atmospheric systems. We use simple binary systems to demonstrate how viscosity and solubility both play a role in affecting the rate of diffusion through aerosol particles.
This is the first time the Maxwell–Stefan framework has been applied to an atmospheric aerosol...
Citation