Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 20 | Copyright
Atmos. Chem. Phys., 18, 15291-15305, 2018
https://doi.org/10.5194/acp-18-15291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Oct 2018

Research article | 24 Oct 2018

Eddy flux measurements of sulfur dioxide deposition to the sea surface

Jack G. Porter1, Warren De Bruyn2, and Eric S. Saltzman1 Jack G. Porter et al.
  • 1Department of Chemistry and Department of Earth System Science, University of California Irvine, Irvine, CA, USA
  • 2Department of Chemistry and Biochemistry, Chapman University, Orange, CA, USA

Abstract. Deposition to the sea surface is a major atmospheric loss pathway for many important trace gases, such as sulfur dioxide (SO2). The air–sea transfer of SO2 is controlled entirely on the atmospheric side of the air–sea interface due to high effective solubility and other physical–chemical properties. There have been few direct field measurements of such fluxes due to the challenges associated with making fast-response measurements of highly soluble trace gases at very low ambient levels. In this study, we report direct eddy covariance air–sea flux measurements of SO2, sensible heat, water vapor, and momentum. The measurements were made over shallow coastal waters from the Scripps Pier, La Jolla, CA, using negative ion chemical ionization mass spectrometry as the SO2 sensor. The observed transfer velocities for SO2, sensible heat, water vapor, and momentum and their wind speed dependences indicate that SO2 fluxes can be reliably measured using this approach. As expected, the transfer velocities for SO2, sensible heat, and water vapor are lower than that for momentum, demonstrating the contribution of molecular diffusion to the overall air-side resistance to gas transfer. Furthermore, transfer velocities of SO2 were lower than those of sensible heat and water vapor when observed simultaneously. This result is attributed to diffusive resistance in the interfacial layer of the air–sea interface.

Publications Copernicus
Download
Short summary
Deposition to the sea surface is a major loss pathway for highly soluble atmospheric trace gases. These fluxes are important to biogeochemical cycles, climate, and air quality. Here we report measurements of air–sea fluxes of sulfur dioxide, sensible heat, and momentum to coastal waters. Transfer velocities derived from the data show a dependence on molecular diffusivity, demonstrating the importance of diffusion in the interfacial layer on the atmospheric side of the air–sea interface.
Deposition to the sea surface is a major loss pathway for highly soluble atmospheric trace...
Citation
Share