Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 20 | Copyright
Atmos. Chem. Phys., 18, 15125-15144, 2018
https://doi.org/10.5194/acp-18-15125-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Oct 2018

Research article | 22 Oct 2018

Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from AERONET, satellite (GOCI), KORUS-AQ observation, and the WRF-Chem model

Elizabeth M. Lennartson1, Jun Wang1, Juping Gu2, Lorena Castro Garcia1, Cui Ge1, Meng Gao1,3, Myungje Choi4, Pablo E. Saide5, Gregory R. Carmichael1, Jhoon Kim4, and Scott J. Janz6 Elizabeth M. Lennartson et al.
  • 1Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa, USA
  • 2Department of Electrical Engineering, Nantong University, Nantong, China
  • 3School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
  • 4Department of Atmospheric Science, Yonsei University, Seoul, Republic of Korea
  • 5Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
  • 6Lab for Atmospheric Chemistry and Dynamics, Code 614, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Abstract. Spatial distribution of diurnal variations of aerosol properties in South Korea, both long term and short term, is studied by using 9 AERONET (AErosol RObotic NETwork) sites from 1999 to 2017 and an additional 10 sites during the KORUS-AQ (Korea–United States Air Quality) field campaign in May and June of 2016. The extent to which the WRF-Chem (Weather Research and Forecasting coupled with Chemistry) model and the GOCI (Geostationary Ocean Color Imager) satellite retrieval can describe these variations is also analyzed. On a daily average, aerosol optical depth (AOD) at 550nm is 0.386 and shows a diurnal variation of 20 to −30% in inland sites, which is larger than the AOD of 0.308 and diurnal variation of ±20% seen in coastal sites. For all the inland and coastal sites, AERONET, GOCI, and WRF-Chem, and observed PM2.5 (particulate matter with aerodynamic diameter less than 2.5µm) data generally show dual peaks for both AOD and PM2.5, one in the morning (often at  ∼ 08:00–10:00KST, Korea Standard Time, especially for PM2.5) and another in the early afternoon ( ∼ 14:00KST, albeit for PM2.5 this peak is smaller and sometimes insignificant). In contrast, Ångström exponent values in all sites are between 1.2 and 1.4 with the exception of the inland rural sites having smaller values near 1.0 during the early morning hours. All inland sites experience a pronounced increase in the Ångström exponent from morning to evening, reflecting an overall decrease in particle size in daytime. To statistically obtain the climatology of diurnal variation of AOD, a minimum requirement of  ∼ 2 years of observation is needed in coastal rural sites, twice as long as that required for the urban sites, which suggests that the diurnal variation of AOD in an urban setting is more distinct and persistent. While Korean GOCI satellite retrievals are able to consistently capture the diurnal variation of AOD (although it has a systematically low bias of 0.04 on average and up to 0.09 in later afternoon hours), WRF-Chem clearly has a deficiency in describing the relative change of peaks and variations between the morning and afternoon, suggesting further studies for the diurnal profile of emissions. Furthermore, the ratio between PM2.5 and AOD in WRF-Chem is persistently larger than the observed counterparts by 30%–50% in different sites, but spatially no consistent diurnal variation pattern of this ratio can be found. Overall, the relatively small diurnal variation of PM2.5 is in high contrast with large AOD diurnal variation, which suggests the large diurnal variation of AOD–PM2.5 relationships (with the PM2.5AOD ratio being largest in the early morning, decreasing around noon, and increasing in late afternoon) and, therefore, the need to use AOD from geostationary satellites to constrain either modeling or estimate of surface PM2.5 for air quality application.

Publications Copernicus
Download
Short summary
This paper is among the first to study the diurnal variations of AOD, PM2.5, and their relationships in South Korea. We show that the PM2.5–AOD relationship has strong diurnal variations, and, hence, using AOD data retrieved from geostationary satellite can improve the monitoring of surface PM2.5 air quality on a daily basis as well as constrain the diurnal variation of aerosol emission.
This paper is among the first to study the diurnal variations of AOD, PM2.5, and their...
Citation
Share