Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 20 | Copyright
Atmos. Chem. Phys., 18, 15017-15046, 2018
https://doi.org/10.5194/acp-18-15017-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Oct 2018

Research article | 19 Oct 2018

Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal

Hansen Cao1, Tzung-May Fu1, Lin Zhang1, Daven K. Henze2, Christopher Chan Miller3, Christophe Lerot4, Gonzalo González Abad3, Isabelle De Smedt4, Qiang Zhang5, Michel van Roozendael4, François Hendrick4, Kelly Chance3, Jie Li6, Junyu Zheng7, and Yuanhong Zhao1 Hansen Cao et al.
  • 1Department of Atmospheric and Oceanic Sciences and Laboratory for Climate and Ocean-Atmosphere Studies, School of Physics, Peking University, Beijing, 100871, China
  • 2Department of Mechanical Engineering, University of Colorado, Boulder, USA
  • 3Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
  • 4Belgian Institute for Space Aeronomy, Brussels, Belgium
  • 5Center for Earth System Science, Tsinghua University, Beijing, China
  • 6Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 7College of Environmental Science and Engineering, South China University of Technology, Guangzhou, China

Abstract. We used the GEOS-Chem model and its adjoint to quantify Chinese non-methane volatile organic compound (NMVOC) emissions for the year 2007, using the tropospheric column concentrations of formaldehyde and glyoxal observed by the Global Ozone Monitoring Experiment 2A (GOME-2A) instrument and the Ozone Monitoring Instrument (OMI) as quantitative constraints. We conducted a series of inversion experiments using different combinations of satellite observations to explore their impacts on the top-down emission estimates. Our top-down estimates for Chinese annual total NMVOC emissions were 30.7 to 49.5 (average 41.9) Tgyr−1, including 16.4 to 23.6 (average 20.2) Tgyr−1 from anthropogenic sources, 12.2 to 22.8 (average 19.2) Tgyr−1 from biogenic sources, and 2.08 to 3.13 (average 2.48) Tgyr−1 from biomass burning. In comparison, the a priori estimate for Chinese annual total NMVOC emissions was 38.3Tgyr−1, including 18.8Tgyr−1 from anthropogenic sources, 17.3Tgyr−1 from biogenic sources, and 2.27Tgyr−1 from biomass burning. The simultaneous use of glyoxal and formaldehyde observations helped distinguish the NMVOC species from different sources and was essential in constraining anthropogenic emissions. Our four inversion experiments consistently showed that the Chinese anthropogenic emissions of NMVOC precursors of glyoxal were larger than the a priori estimates. Our top-down estimates for Chinese annual emission of anthropogenic aromatics (benzene, toluene, and xylene) ranged from 5.5 to 7.9Tgyr−1, 2% to 46% larger than the estimate of the a priori emission inventory (5.4Tgyr−1). Three out of our four inversion experiments indicated that the seasonal variation in Chinese NMVOC emissions was significantly stronger than indicated in the a priori inventory. Model simulations driven by the average of our top-down NMVOC emission estimates (which had a stronger seasonal variation than the a priori) showed that surface afternoon ozone concentrations over eastern China increased by 1–8ppb in June and decreased by 1–10ppb in December relative to the simulations using the a priori emissions and were in better agreement with measurements. We concluded that the satellite observations of formaldehyde and glyoxal together provided quantitative constraints on the emissions and source types of NMVOCs over China and improved our understanding on regional chemistry.

Publications Copernicus
Download
Short summary
Our top-down estimates for annual total Chinese NMVOC emissions was 30.7 to 49.5 Tg y−1, including 16.4 to 23.6 Tg y−1 from anthropogenic sources, 12.2 to 22.8 Tg y−1 from biogenic sources, and 2.08 to 3.13 Tg y−1 from biomass burning. Our four inversions consistently showed that the emissions of Chinese anthropogenic NMVOC precursors of glyoxal were larger than the a priori estimates. The glyoxal and formaldehyde constraints helped distinguish the NMVOC species from different sources.
Our top-down estimates for annual total Chinese NMVOC emissions was 30.7 to 49.5 Tg y−1,...
Citation
Share