Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 19 | Copyright

Special issue: CHemistry and AeRosols Mediterranean EXperiments (ChArMEx)...

Atmos. Chem. Phys., 18, 14477-14492, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Oct 2018

Research article | 10 Oct 2018

Fluxes and sources of nutrient and trace metal atmospheric deposition in the northwestern Mediterranean

Karine Desboeufs1, Elisabeth Bon Nguyen1, Servanne Chevaillier1, Sylvain Triquet1, and François Dulac2 Karine Desboeufs et al.
  • 1Laboratoire Interuniversitaire des Systèmes Atmopshériques (LISA), IPSL, UMR CNRS 7583, Université Paris-Est Créteil et Université Paris-Diderot, Créteil, France
  • 2Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR 8212 CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, CEA Saclay 701, Gif-sur-Yvette, France

Abstract. Total atmospheric deposition was collected on a weekly basis over 3.5 years (March 2008–October 2011) at a remote coastal site on the west coast of Corsica. Deposition time series of macro- and micronutrients (N, P, Si, Fe) and trace metals (As, Cr, Cu, Mn, Ni, V, Zn) are investigated in terms of variability and source apportionment (from fluxes of proxies for aerosol sources (Al, Ti, Ca, Na, Mg, S, Sr, K, Pb)). The highest fluxes are recorded for Si, P, and Fe for nutrients and Zn and Mn for trace metals. For the majority of elements, data show some weeks with high episodic fluxes, except for N, Cr, and V, which present the lowest variability. A total of 12 intense mineral dust deposition events are identified during the sampling period. The contribution of these events to the fluxes of Fe and Si represents 52% and 57% of their total fluxes, respectively, confirming the important role of these sporadic dust events in the inputs of these elements in the Mediterranean. For N and P, the contribution of these intense dust deposition events is lower and reaches 10% and 15%, respectively. Out of these most intense events, positive matrix factorization (PMF) was applied to our total deposition database in order to identify the main sources of nutrients and trace metals deposited. Results show that P deposition is mainly associated with anthropogenic biomass burning inputs. For N deposition, inputs associated with marine sources (maybe associated with the reaction of anthropogenic N on NaCl particles) and anthropogenic sources are quasi-similar. A good correlation is obtained between N and S fluxes, supporting a common origin associated with inorganic secondary aerosol, i.e., ammonium sulfate. For trace metals, their origin is very variable: with a large contribution of natural dust sources for Ni or Mn and conversely of anthropogenic sources for V and Zn.

Publications Copernicus
Special issue
Short summary
Atmospheric deposition is known to be a major source of nutrients for the marine biosphere in the Mediterranean Sea. The study of the origin of nutrients and trace metals in Corsica presented here shows that the dust events were the major sources of Si and Fe. Conversely, combustion sources predominated the inputs of N, P, and trace metals. This work showed the importance of considering background anthropogenic deposition for estimating the impact of atmospheric forcing on marine biota.
Atmospheric deposition is known to be a major source of nutrients for the marine biosphere in...