Articles | Volume 18, issue 18
https://doi.org/10.5194/acp-18-13733-2018
https://doi.org/10.5194/acp-18-13733-2018
Research article
 | 
27 Sep 2018
Research article |  | 27 Sep 2018

Exploring the potential of nano-Köhler theory to describe the growth of atmospheric molecular clusters by organic vapors using cluster kinetics simulations

Jenni Kontkanen, Tinja Olenius, Markku Kulmala, and Ilona Riipinen

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jenni Kontkanen on behalf of the Authors (23 Aug 2018)  Author's response    Manuscript
ED: Publish as is (03 Sep 2018) by Eliza Harris
Download
Short summary
New particle formation involving sulfuric acid, bases and organic compounds is an important source of atmospheric aerosol particles. We investigate the capability of nano-Köhler theory to describe this process by simulating the dynamics of atmospheric molecular clusters. We find that nano-Köhler-type behavior occurs in our simulations when the saturation ratio of the organic vapor and the ratio between organic and inorganic vapor concentrations are in a suitable range.
Altmetrics
Final-revised paper
Preprint