Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 18, issue 18
Atmos. Chem. Phys., 18, 13639–13654, 2018
https://doi.org/10.5194/acp-18-13639-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 13639–13654, 2018
https://doi.org/10.5194/acp-18-13639-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 27 Sep 2018

Research article | 27 Sep 2018

Simulation of the size-composition distribution of atmospheric nanoparticles over Europe

David Patoulias et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Spyros Pandis on behalf of the Authors (28 Jul 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (08 Aug 2018) by Maria Kanakidou
RR by Anonymous Referee #2 (13 Aug 2018)
ED: Publish subject to technical corrections (28 Aug 2018) by Maria Kanakidou
Publications Copernicus
Download
Short summary
PMCAMx-UF, a 3-D chemical transport model focusing on the simulation of ultrafine particles, has been extended with the addition of the volatility basis set (VBS) approach for the simulation of organic aerosol. The model was applied in Europe and its predictions were evaluated against field observations collected during the PEGASOS 2012 campaign. The condensation of organics led to an increase (50–120 %) in the larger particles but the total number concentration decreased by 10–30 %.
PMCAMx-UF, a 3-D chemical transport model focusing on the simulation of ultrafine particles, has...
Citation