Articles | Volume 18, issue 18
https://doi.org/10.5194/acp-18-13639-2018
https://doi.org/10.5194/acp-18-13639-2018
Research article
 | 
27 Sep 2018
Research article |  | 27 Sep 2018

Simulation of the size-composition distribution of atmospheric nanoparticles over Europe

David Patoulias, Christos Fountoukis, Ilona Riipinen, Ari Asmi, Markku Kulmala, and Spyros N. Pandis

Abstract. PMCAMx-UF, a three-dimensional chemical transport model focusing on the simulation of the ultrafine particle size distribution and composition has been extended with the addition of the volatility basis set (VBS) approach for the simulation of organic aerosol (OA). The model was applied in Europe to quantify the effect of secondary semi-volatile organic vapors on particle number concentrations. The model predictions were evaluated against field observations collected during the PEGASOS 2012 campaign. The measurements included both ground and airborne measurements, from stations across Europe and a zeppelin measuring above Po Valley. The ground level concentrations of particles with a diameter larger than 100 nm (N100) were reproduced with a daily normalized mean error of 40 % and a daily normalized mean bias of −20 %. PMCAMx-UF tended to overestimate the concentration of particles with a diameter larger than 10 nm (N10) with a daily normalized mean bias of 75 %. The model was able to reproduce, within a factor of 2, 85 % of the N10 and 75 % of the N100 zeppelin measurements above ground. The condensation of organics led to an increase (50 %–120 %) in the N100 concentration mainly in central and northern Europe, while the N10 concentration decreased by 10 %–30 %. Including the VBS in PMCAMx-UF improved its ability to simulate aerosol number concentration compared to simulations neglecting organic condensation on ultrafine particles.

Download
Short summary
PMCAMx-UF, a 3-D chemical transport model focusing on the simulation of ultrafine particles, has been extended with the addition of the volatility basis set (VBS) approach for the simulation of organic aerosol. The model was applied in Europe and its predictions were evaluated against field observations collected during the PEGASOS 2012 campaign. The condensation of organics led to an increase (50–120 %) in the larger particles but the total number concentration decreased by 10–30 %.
Altmetrics
Final-revised paper
Preprint