Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 17 | Copyright
Atmos. Chem. Phys., 18, 13173-13196, 2018
https://doi.org/10.5194/acp-18-13173-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note 13 Sep 2018

Technical note | 13 Sep 2018

Technical note: How are NH3 dry deposition estimates affected by combining the LOTOS-EUROS model with IASI-NH3 satellite observations?

Shelley C. van der Graaf1, Enrico Dammers2, Martijn Schaap3,4, and Jan Willem Erisman1,5 Shelley C. van der Graaf et al.
  • 1Cluster Earth and Climate, Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
  • 2Environment and Climate Change Canada, Toronto, Ontario, Canada
  • 3TNO, Climate Air and Sustainability, Utrecht, the Netherlands
  • 4Institute for Meteorology, Free University Berlin, Berlin, Germany
  • 5Louis Bolk Institute, Driebergen, the Netherlands

Abstract. Atmospheric levels of reactive nitrogen have increased substantially during the last century resulting in increased nitrogen deposition to ecosystems, causing harmful effects such as soil acidification, reduction in plant biodiversity and eutrophication in lakes and the ocean. Recent developments in the use of atmospheric remote sensing enabled us to resolve concentration fields of NH3 with larger spatial coverage. These observations may be used to improve the quantification of NH3 deposition. In this paper, we use a relatively simple, data-driven method to derive dry deposition fluxes and surface concentrations of NH3 for Europe and for the Netherlands. The aim of this paper is to determine the applicability and the limitations of this method for NH3. Space-born observations of the Infrared Atmospheric Sounding Interferometer (IASI) and the LOTOS-EUROS atmospheric transport model are used. The original modelled dry NH3 deposition flux from LOTOS-EUROS and the flux inferred from IASI are compared to indicate areas with large discrepancies between the two. In these areas, potential model or emission improvements are needed. The largest differences in derived dry deposition fluxes occur in large parts of central Europe, where the satellite-observed NH3 concentrations are higher than the modelled ones, and in Switzerland, northern Italy (Po Valley) and southern Turkey, where the modelled NH3 concentrations are higher than the satellite-observed ones. A sensitivity analysis of eight model input parameters important for NH3 dry deposition modelling showed that the IASI-derived dry NH3 deposition fluxes may vary from  ∼  20% up to  ∼ 50% throughout Europe. Variations in the NH3 dry deposition velocity led to the largest deviations in the IASI-derived dry NH3 deposition flux and should be focused on in the future. A comparison of NH3 surface concentrations with in situ measurements of several established networks – the European Monitoring and Evaluation Programme (EMEP), Meetnet Ammoniak in Natuurgebieden (MAN) and Landelijk Meetnet Luchtkwaliteit (LML) – showed no significant or consistent improvement in the IASI-derived NH3 surface concentrations compared to the originally modelled NH3 surface concentrations from LOTOS-EUROS. It is concluded that the IASI-derived NH3 deposition fluxes do not show strong improvements compared to modelled NH3 deposition fluxes and there is a future need for better, more robust, methods to derive NH3 dry deposition fluxes.

Download & links
Publications Copernicus
Download
Short summary
A combination of NH3 satellite observations from IASI and the LOTOS-EUROS model is used to derive NH3 surface concentrations and dry deposition fluxes over Europe. The results were evaluated using surface measurements (EMEP, LML, MAN) and a sensitivity study. This is a first step in further integration of surface measurements, satellite observations and an atmospheric transport model to derive accurate NH3 surface concentrations and dry deposition fluxes on a large scale.
A combination of NH3 satellite observations from IASI and the LOTOS-EUROS model is used to...
Citation
Share