Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 18, issue 17
Atmos. Chem. Phys., 18, 13075-13095, 2018
https://doi.org/10.5194/acp-18-13075-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 13075-13095, 2018
https://doi.org/10.5194/acp-18-13075-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 Sep 2018

Research article | 11 Sep 2018

Springtime aerosol load as observed from ground-based and airborne lidars over northern Norway

Patrick Chazette1, Jean-Christophe Raut2, and Julien Totems1 Patrick Chazette et al.
  • 1Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Laboratoire mixte CEA-CNRS-UVSQ, UMR 1572, CEA Saclay, 91191 Gif-sur-Yvette, France
  • 2LATMOS/IPSL, Sorbonne Université, CNRS, UVSQ, Paris, France

Abstract. To investigate the origin of springtime aerosols in the Arctic region we performed ground-based and airborne 355nm Raman lidar observations in the north of Norway (Hammerfest). Two lidars were embedded (i) on an ultralight aircraft for vertical (nadir) or horizontal line-of-sight measurements and (ii) in an air-conditioned van on the ground for vertical (zenith) measurements. This field experiment was designed as part of the Pollution in the ARCtic System (PARCS) project of the French Arctic Initiative and took place from 13 to 26 May 2016. The consistency among lidar measurements is verified by comparing nadir, horizontal line of sight, and ground-based Raman lidar profiles. Dispersion of the order of 0.01km−1 is obtained among lidar-derived aerosol extinction coefficients at 355nm. The aerosol load measured in the first 3km of the troposphere remains low throughout the campaign, with aerosol optical thickness (AOT) of 0.1 at 355nm ( ∼ 0.05 at 550nm). The main contributors to the evolution of the aerosol load at low altitude prove to be one of the flares of the nearby Melkøya gas processing facility, the oceanic source, and the transport of aerosols from industrial sites in Russia. Moreover, ground-based lidar measurements allowed us to identify three cases of long-range aerosol transport (between 3 and 8km above the mean sea level). Using back trajectories computed with the Lagrangian model FLEXPART-WRF, these aerosol plumes are shown to be the result of the strong forest fires that occurred in the area of Fort McMurray, in Canada. They can at most double the AOT value over the Arctic area, with an anomaly of 0.1 on the AOT at 355nm.

Publications Copernicus
Download
Short summary
We associate aerosol lidar measurements from the ground level and from an ultralight aircraft to improve our knowledge about aerosols above the Arctic circle; we highlight long-range transport of biomass burning aerosols and characterize the aerosol emissions from a flaring facility. The field experiment was performed as part of the Pollution in the ARCtic System (PARCS) project of the French Arctic Initiative, which took place from 13 to 26 May 2016 in northern Norway (over 70 °N).
We associate aerosol lidar measurements from the ground level and from an ultralight aircraft to...
Citation
Share