Articles | Volume 18, issue 16
https://doi.org/10.5194/acp-18-12461-2018
https://doi.org/10.5194/acp-18-12461-2018
Research article
 | Highlight paper
 | 
28 Aug 2018
Research article | Highlight paper |  | 28 Aug 2018

Connecting regional aerosol emissions reductions to local and remote precipitation responses

Daniel M. Westervelt, Andrew J. Conley, Arlene M. Fiore, Jean-François Lamarque, Drew T. Shindell, Michael Previdi, Nora R. Mascioli, Greg Faluvegi, Gustavo Correa, and Larry W. Horowitz

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Daniel Westervelt on behalf of the Authors (01 Aug 2018)  Author's response    Manuscript
ED: Publish as is (06 Aug 2018) by Qiang Zhang
Download
Short summary
Small particles in Earth's atmosphere (also referred to as atmospheric aerosols) emitted by human activities impact Earth's climate in complex ways and play an important role in Earth's water cycle. We use a climate modeling approach and find that aerosols from the United States and Europe can have substantial effects on rainfall in far-away regions such as Africa's Sahel or the Mediterranean. Air pollution controls in these regions may help reduce the likelihood and severity of Sahel drought.
Altmetrics
Final-revised paper
Preprint