Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 18, issue 16
Atmos. Chem. Phys., 18, 12011–12044, 2018
https://doi.org/10.5194/acp-18-12011-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The 10th International Carbon Dioxide Conference (ICDC10)...

Atmos. Chem. Phys., 18, 12011–12044, 2018
https://doi.org/10.5194/acp-18-12011-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Aug 2018

Research article | 22 Aug 2018

A comparison of posterior atmospheric CO2 adjustments obtained from in situ and GOSAT constrained flux inversions

Saroja M. Polavarapu et al.

Related authors

The Canadian atmospheric transport model for simulating greenhouse gas evolution on regional scales: GEM–MACH–GHG v.137-reg
Jinwoong Kim, Saroja M. Polavarapu, Douglas Chan, and Michael Neish
Geosci. Model Dev., 13, 269–295, https://doi.org/10.5194/gmd-13-269-2020,https://doi.org/10.5194/gmd-13-269-2020, 2020
Short summary
On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems?
Brendan Byrne, Dylan B. A. Jones, Kimberly Strong, Saroja M. Polavarapu, Anna B. Harper, David F. Baker, and Shamil Maksyutov
Atmos. Chem. Phys., 19, 13017–13035, https://doi.org/10.5194/acp-19-13017-2019,https://doi.org/10.5194/acp-19-13017-2019, 2019
Short summary
Coupling the Canadian Terrestrial Ecosystem Model (CTEM v. 2.0) to Environment and Climate Change Canada's greenhouse gas forecast model (v.107-glb)
Bakr Badawy, Saroja Polavarapu, Dylan B. A. Jones, Feng Deng, Michael Neish, Joe R. Melton, Ray Nassar, and Vivek K. Arora
Geosci. Model Dev., 11, 631–663, https://doi.org/10.5194/gmd-11-631-2018,https://doi.org/10.5194/gmd-11-631-2018, 2018
Short summary
Greenhouse gas simulations with a coupled meteorological and transport model: the predictability of CO2
Saroja M. Polavarapu, Michael Neish, Monique Tanguay, Claude Girard, Jean de Grandpré, Kirill Semeniuk, Sylvie Gravel, Shuzhan Ren, Sébastien Roche, Douglas Chan, and Kimberly Strong
Atmos. Chem. Phys., 16, 12005–12038, https://doi.org/10.5194/acp-16-12005-2016,https://doi.org/10.5194/acp-16-12005-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere
Junhua Liu, Jose M. Rodriguez, Luke D. Oman, Anne R. Douglass, Mark A. Olsen, and Lu Hu
Atmos. Chem. Phys., 20, 6417–6433, https://doi.org/10.5194/acp-20-6417-2020,https://doi.org/10.5194/acp-20-6417-2020, 2020
Short summary
Design and evaluation of CO2 observation network to optimize surface CO2 fluxes in Asia using observation system simulation experiments
Jun Park and Hyun Mee Kim
Atmos. Chem. Phys., 20, 5175–5195, https://doi.org/10.5194/acp-20-5175-2020,https://doi.org/10.5194/acp-20-5175-2020, 2020
Short summary
Ozone pollution over China and India: seasonality and sources
Meng Gao, Jinhui Gao, Bin Zhu, Rajesh Kumar, Xiao Lu, Shaojie Song, Yuzhong Zhang, Beixi Jia, Peng Wang, Gufran Beig, Jianlin Hu, Qi Ying, Hongliang Zhang, Peter Sherman, and Michael B. McElroy
Atmos. Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020,https://doi.org/10.5194/acp-20-4399-2020, 2020
Short summary
Influences of oceanic ozone deposition on tropospheric photochemistry
Ryan J. Pound, Tomás Sherwen, Detlev Helmig, Lucy J. Carpenter, and Mat J. Evans
Atmos. Chem. Phys., 20, 4227–4239, https://doi.org/10.5194/acp-20-4227-2020,https://doi.org/10.5194/acp-20-4227-2020, 2020
Short summary
Investigating the regional contributions to air pollution in Beijing: a dispersion modelling study using CO as a tracer
Marios Panagi, Zoë L. Fleming, Paul S. Monks, Matthew J. Ashfold, Oliver Wild, Michael Hollaway, Qiang Zhang, Freya A. Squires, and Joshua D. Vande Hey
Atmos. Chem. Phys., 20, 2825–2838, https://doi.org/10.5194/acp-20-2825-2020,https://doi.org/10.5194/acp-20-2825-2020, 2020
Short summary

Cited articles

Andres, R. J., Gregg, J. S., Losey, L., Marland, G., and Boden, T. A.: Monthly, global emissions of carbon dioxide from fossil fuel consumption, Tellus B, 63, 309–327, https://doi.org/10.1111/j.1600-0889.2011.00530.x, 2011.
Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation for atmospheric CO2, Tellus B, 58, 359–365, 2006.
Barnes, E. A., Parazoo, N., Orbe, C., and Denning, A. S.: Isentropic transport and the seasonal cycle amplitude of CO2, J. Geophys. Res.-Atmos., 121, 8106–8124, 2016.
Publications Copernicus
Download
Short summary
A new diagnostic reveals how fluxes constrained by two different CO2 observing systems inform atmospheric CO2 simulations. The potential for GOSAT data to better resolve zonally asymmetric structures in the tropics year-round and in the northern extratropics in most seasons is shown. Using in situ data yields a better match to independent observations on the global, annual scale. Such complementarity of the observing systems can be exploited in greenhouse gas data assimilation systems.
A new diagnostic reveals how fluxes constrained by two different CO2 observing systems inform...
Citation