Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 18, issue 15
Atmos. Chem. Phys., 18, 11507–11527, 2018
https://doi.org/10.5194/acp-18-11507-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Study of ozone, aerosols and radiation over the Tibetan Plateau...

Atmos. Chem. Phys., 18, 11507–11527, 2018
https://doi.org/10.5194/acp-18-11507-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Aug 2018

Research article | 15 Aug 2018

Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model

Cenlin He et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Cenlin He on behalf of the Authors (31 Jul 2018)  Author's response
ED: Publish as is (04 Aug 2018) by Yan Yin
Publications Copernicus
Download
Short summary
Snow albedo plays a key role in the Earth and climate system. It can be affected by impurities and snow properties. This study implements new parameterizations into a widely used snow model to account for effects of snow shape and black carbon–snow mixing state on snow albedo reduction in the Tibetan Plateau. This study points toward an imperative need for extensive measurements and improved model characterization of snow grain shape and aerosol–snow mixing state in Tibet and elsewhere.
Snow albedo plays a key role in the Earth and climate system. It can be affected by impurities...
Citation