Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
ACP | Articles | Volume 18, issue 2
Atmos. Chem. Phys., 18, 1091–1114, 2018
https://doi.org/10.5194/acp-18-1091-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Chemistry–Climate Modelling Initiative (CCMI) (ACP/AMT/ESSD/GMD...

Atmos. Chem. Phys., 18, 1091–1114, 2018
https://doi.org/10.5194/acp-18-1091-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Jan 2018

Research article | 29 Jan 2018

Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

Olaf Morgenstern et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Olaf Morgenstern on behalf of the Authors (16 Oct 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (31 Oct 2017) by Paul Young
RR by Anonymous Referee #1 (06 Nov 2017)
RR by Anonymous Referee #2 (08 Nov 2017)
ED: Publish as is (15 Dec 2017) by Paul Young
AR by Olaf Morgenstern on behalf of the Authors (20 Dec 2017)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
We assess how ozone as simulated by a group of chemistry–climate models responds to variations in man-made climate gases and ozone-depleting substances. We find some agreement, particularly in the middle and upper stratosphere, but also considerable disagreement elsewhere. Such disagreement affects the reliability of future ozone projections based on these models, and also constitutes a source of uncertainty in climate projections using prescribed ozone derived from these simulations.
We assess how ozone as simulated by a group of chemistry–climate models responds to variations...
Citation