Articles | Volume 18, issue 14
https://doi.org/10.5194/acp-18-10237-2018
https://doi.org/10.5194/acp-18-10237-2018
Research article
 | 
18 Jul 2018
Research article |  | 18 Jul 2018

High gas-phase mixing ratios of formic and acetic acid in the High Arctic

Emma L. Mungall, Jonathan P. D. Abbatt, Jeremy J. B. Wentzell, Gregory R. Wentworth, Jennifer G. Murphy, Daniel Kunkel, Ellen Gute, David W. Tarasick, Sangeeta Sharma, Christopher J. Cox, Taneil Uttal, and John Liggio

Related authors

Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago
Betty Croft, Randall V. Martin, W. Richard Leaitch, Julia Burkart, Rachel Y.-W. Chang, Douglas B. Collins, Patrick L. Hayes, Anna L. Hodshire, Lin Huang, John K. Kodros, Alexander Moravek, Emma L. Mungall, Jennifer G. Murphy, Sangeeta Sharma, Samantha Tremblay, Gregory R. Wentworth, Megan D. Willis, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 19, 2787–2812, https://doi.org/10.5194/acp-19-2787-2019,https://doi.org/10.5194/acp-19-2787-2019, 2019
Short summary
Overview paper: New insights into aerosol and climate in the Arctic
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019,https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments
Douglas B. Collins, Julia Burkart, Rachel Y.-W. Chang, Martine Lizotte, Aude Boivin-Rioux, Marjolaine Blais, Emma L. Mungall, Matthew Boyer, Victoria E. Irish, Guillaume Massé, Daniel Kunkel, Jean-Éric Tremblay, Tim Papakyriakou, Allan K. Bertram, Heiko Bozem, Michel Gosselin, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 13119–13138, https://doi.org/10.5194/acp-17-13119-2017,https://doi.org/10.5194/acp-17-13119-2017, 2017
Short summary
Dimethyl sulfide in the summertime Arctic atmosphere: measurements and source sensitivity simulations
Emma L. Mungall, Betty Croft, Martine Lizotte, Jennie L. Thomas, Jennifer G. Murphy, Maurice Levasseur, Randall V. Martin, Jeremy J. B. Wentzell, John Liggio, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 6665–6680, https://doi.org/10.5194/acp-16-6665-2016,https://doi.org/10.5194/acp-16-6665-2016, 2016
Short summary
Formation of hydroxyl radicals from photolysis of secondary organic aerosol material
K. M. Badali, S. Zhou, D. Aljawhary, M. Antiñolo, W. J. Chen, A. Lok, E. Mungall, J. P. S. Wong, R. Zhao, and J. P. D. Abbatt
Atmos. Chem. Phys., 15, 7831–7840, https://doi.org/10.5194/acp-15-7831-2015,https://doi.org/10.5194/acp-15-7831-2015, 2015
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024,https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Reanalysis of NOAA H2 observations: implications for the H2 budget
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024,https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024,https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024,https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024,https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary

Cited articles

Aliabadi, A., Staebler, R., de Grandpré, J., Zadra, A., and Vaillancourt, P.: Comparison of estimated atmospheric boundary layer mixing height in the Arctic and Southern Great Plains under statically stable conditions: Experimental and numerical aspects, Atmos.-Ocean, 54, 60–74, https://doi.org/10.1080/07055900.2015.1119100, 2016. a
Anderson, P. S. and Neff, W. D.: Boundary layer physics over snow and ice, Atmos. Chem. Phys., 8, 3563–3582, https://doi.org/10.5194/acp-8-3563-2008, 2008. a, b
Baboukas, E. D., Kanakidou, M., and Mihalopoulos, N.: Carboxylic acids in gas and particulate phase above the Atlantic Ocean, J. Geophys. Res.-Atmos., 105, 14459–14471, https://doi.org/10.1029/1999JD900977, 2000. a, b
Bannan, T. J., Bacak, A., Muller, J. B. A., Booth, A. M., Jones, B., Le Breton, M., Leather, K. E., Ghalaieny, M., Xiao, P., Shallcross, D. E., and Percival, C. J.: Importance of direct anthropogenic emissions of formic acid measured by a chemical ionisation mass spectrometer (CIMS) during the Winter ClearfLo Campaign in London, January 2012, Atmos. Environ., 83, 301–310, https://doi.org/10.1016/j.atmosenv.2013.10.029, 2014. a, b
Barrie, L. A. and Barrie, M. J.: Chemical components of lower tropospheric aerosols in the high Arctic: Six years of observations, J. Atmos. Chem, 11, 211–226, 1990. a
Download
Short summary
We measured gas-phase formic and acetic acid at Alert, Nunavut. These acids play an important role in cloud water acidity in remote environments, yet they are not well represented in chemical transport models, particularly in the Arctic. We observed high levels of formic and acetic acid under both cold, wet, and cloudy and warm, sunny, and dry conditions, suggesting that multiple sources significantly contribute to gas-phase concentrations of these species in the summer Arctic.
Altmetrics
Final-revised paper
Preprint