Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 18, issue 14
Atmos. Chem. Phys., 18, 10219-10236, 2018
https://doi.org/10.5194/acp-18-10219-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: CHemistry and AeRosols Mediterranean EXperiments (ChArMEx)...

Atmos. Chem. Phys., 18, 10219-10236, 2018
https://doi.org/10.5194/acp-18-10219-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jul 2018

Research article | 18 Jul 2018

Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in Athens, Greece

Athina-Cerise Kalogridis1, Stergios Vratolis1, Eleni Liakakou2, Evangelos Gerasopoulos2, Nikolaos Mihalopoulos2, and Konstantinos Eleftheriadis1 Athina-Cerise Kalogridis et al.
  • 1Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre of Scientific Research “Demokritos”, Ag. Paraskevi, 15310, Greece
  • 2Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Metaxa & V. Pavlou, P. Penteli, 15236, Athens, Greece

Abstract. The scope of this study was to estimate the contribution of fossil fuel and wood burning combustion to black carbon (BC) and carbon monoxide (CO) during wintertime, in Athens. For that purpose, in situ measurements of equivalent black carbon (eBC) and CO were simultaneously conducted in a suburban and an urban background monitoring site in Athens during the 3 months of winter 2014–2015. For the deconvolution of eBC into eBC emitted from fossil fuel (BCff) and wood burning (BCwb), a method based on the spectral dependency of the absorption of pure black carbon and brown carbon was used. Thereafter, BCwb and BCff estimated fractions were used along with measured CO concentrations in a multiple regression analysis, in order to quantify the contribution of each one of the combustion sources to the ambient CO levels. For a comparative analysis of the results, we additionally estimated the wood burning and fossil fuel contribution to CO, calculated on the basis of their CONOx emission ratios. The results indicate that during wintertime BC and CO are mainly emitted by local sources within the Athens Metropolitan Area (AMA). Fossil fuel combustion, mainly from road traffic, is found to be the major contributor to both eBC in PM2.5 and CO ambient concentrations in AMA. However, wintertime wood burning makes a significant contribution to the observed eBC (of about 30%) and CO concentrations (on average, 11 and 16% of total CO in the suburban and urban background sites respectively). Both BC and CO from biomass burning (BCwb and COwb, respectively) present a clear diurnal pattern, with the highest concentrations during night-time, supporting the theory of local domestic heating being their main source.

Publications Copernicus
Special issue
Download
Short summary
Contribution of biomass burning versus fossil fuel use on wintertime air pollution is investigated based on continuous surface measurements of black carbon (BC) and carbon monoxide (CO) at a suburban and an urban background monitoring sites in Athens. Fossil fuel combustion is found to be the major contributor to both BC and CO ambient concentrations. However, wood burning used for domestic heating makes a significant contribution of about 30 and 15 % to the observed BC and CO levels.
Contribution of biomass burning versus fossil fuel use on wintertime air pollution is...
Citation
Share