Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 18, issue 13
Atmos. Chem. Phys., 18, 10089–10122, 2018
https://doi.org/10.5194/acp-18-10089-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 18, 10089–10122, 2018
https://doi.org/10.5194/acp-18-10089-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Jul 2018

Research article | 16 Jul 2018

Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event

Carlos Rodriguez-Navarro et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (14 Jun 2018)  Author's response
ED: Publish as is (15 Jun 2018) by Markus Ammann
Publications Copernicus
Download
Short summary
Saharan dust wet deposited in Granada (Spain) on 21–23 February 2017 during the most extreme red rain event of the last decades led to the deposition of ~ 140 000 T of dust just in the city of Granada, dwarfing any other standard Saharan dust events taking place in the area. The multianalytical study of Saharan dust disclosed potential source areas and the mineralogy and composition of the size fractions of desert dust as well as its potential biogeochemical, radiative, and health effects.
Saharan dust wet deposited in Granada (Spain) on 21–23 February 2017 during the most extreme red...
Citation