Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO$_2$(ν$_3$) and OH(ν) emission models

Peter A. Panka1,2, Alexander A. Kutepov2,3, Konstantinos S. Kalogerakis4, Diego Janches2, James M. Russell5, Ladislav Rezac6, Artem G. Feofilov1, Martin G. Mlynczak8, and Erdal Yiğit1

1Department of Physics and Astronomy, George Mason University, Fairfax, VA, USA
2NASA Goddard Space Flight Center, Greenbelt, MD, USA
3The Catholic University of America, Washington, DC, USA
4Center for Geospace Studies, SRI International, Menlo Park, CA, USA
5Center for Atmospheric Sciences, Hampton University, Hampton, VA, USA
6Max Planck Institute for Solar System Research, Göttingen, Germany
7Laboratoire de Météorologie Dynamique/IPSL/FX-Conseil, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
8NASA Langley Research Center, Hampton, VA, USA

Correspondence to: Peter A. Panka (ppanka@masonlive.gmu.edu)

Received: 24 August 2016 – Discussion started: 22 November 2016
Revised: 10 June 2017 – Accepted: 19 June 2017 – Published: 18 August 2017

Abstract. In the 1970s, the mechanism of vibrational energy transfer from chemically produced OH(ν) in the nighttime mesosphere to the CO$_2$(ν$_3$) vibration, OH(ν) → N$_2$(ν) → CO$_2$(ν$_3$), was proposed. In later studies it was shown that this “direct” mechanism for simulated nighttime 4.3 µm emissions of the mesosphere is not sufficient to explain space observations. In order to better simulate these observations, an additional enhancement is needed that would be equivalent to the production of 2.8–3 N$_2$(1) molecules instead of one N$_2$(1) molecule in each quenching reaction of OH(ν) + N$_2$(0). Recently a new “indirect” channel of the OH(ν) energy transfer to N$_2$(ν) vibrations, OH(ν) → O(3D) → N$_2$(ν), was suggested and then confirmed in a laboratory experiment, where its rate for OH(ν = 9) + O(3P) was measured. We studied in detail the impact of the “direct” and “indirect” mechanisms on CO$_2$(ν$_3$) and OH(ν) vibrational level populations and emissions. We also compared our calculations with (a) the SABER/TIMED nighttime 4.3 µm CO$_2$ and OH 1.6 and 2.0 µm limb raddiances of the mesosphere–lower thermosphere (MLT) and (b) with ground- and space-based observations of OH(ν) densities in the nighttime mesosphere. We found that the new “indirect” channel provides a strong enhancement of the 4.3 µm CO$_2$ emission, which is comparable to that obtained with the “direct” mechanism alone but assuming an efficiency that is 3 times higher. The model based on the “indirect” channel also produces OH(ν) density distributions which are in good agreement with both SABER limb OH emission observations and ground and space measurements. This is, however, not true for the model which relies on the “direct” mechanism alone. This discrepancy is caused by the lack of an efficient redistribution of the OH(ν) energy from higher vibrational levels emitting at 2.0 µm to lower levels emitting at 1.6 µm. In contrast, the new “indirect” mechanism efficiently removes at least five quanta in each OH(ν ≥ 5) + O(3P) collision and provides the OH(ν) distributions which agree with both SABER limb OH emission observations and ground- and space-based OH(ν) density measurements. This analysis suggests that the important mechanism of the OH(ν) vibrational energy relaxation in the nighttime MLT, which was missing in the emission models of this atmospheric layer, has been finally identified.
1 Introduction

A detailed study of nighttime 4.3 µm emissions was conducted by López-Puertas et al. (2004) aimed at determining the dominant mechanisms of exciting CO$_2$(v_3), where v_3 is the asymmetric stretch mode that emits 4.3 µm radiation. The nighttime measurements of SABER channels 7 (4.3 µm), 8 (2.0 µm), and 9 (1.6 µm) for geomagnetically quiet conditions were analyzed, where channels 8 and 9 are sensitive to the OH ($v \leq 9$) overtone radiation from levels $v = 8$–9 and $v = 3$–5, respectively. López-Puertas et al. (2004) showed a positive correlation between 4.3 µm and both OH channel radiances at a tangent height of 85 km. This correlation was associated with the transfer (Kumer et al., 1978) of energy of the vibrationally excited OH(v) produced in the following chemical reaction (hereafter “direct” mechanism):

\[
H + O_3 \rightarrow O_2 + OH(v \leq 9) \quad (R1)
\]

first to N_2(1)

\[
OH(v \leq 9) + N_2(0) \leftrightarrow OH(v - 1) + N_2(1), \quad (R2)
\]

and then further to CO$_2$(v_3) vibrations

\[
N_2(1) + CO_2(0) \leftrightarrow N_2(0) + CO_2(v_3). \quad (R3)
\]

However, López-Puertas et al. (2004) showed that calculations based on the Kumer et al. (1978) model do not reproduce the 4.3 µm radiances observed by SABER. Although accounting for energy transfer from OH(v) did provide a substantial enhancement to 4.3 µm emission, a 40% difference between simulated and observed radiance remained (for the SABER scan 22, orbit 01264, 77° N, 3 March 2002, which was studied in detail) for altitudes above 70 km. In order to reproduce measurements these authors found that, on average, 2.8–3 N_2(1) molecules (instead of Kumer’s suggested value of 1) are needed to be produced after each quenching of OH(v) molecule in Reaction (R2). Alternative excitation mechanisms that were theorized to enhance the 4.3 µm radiation (i.e., via O$_2$ and direct energy transfer from OH to CO$_2$) were tested but found to be insignificant.

Recently, Sharma et al. (2015) suggested an additional mechanism that contributes to the CO$_2$(v_3) excitation at nighttime, and discussed in detail its available experimental and theoretical evidence. According to this mechanism, highly vibrationally excited OH(v), produced by Reaction (R1), rapidly loses several vibrational quanta in collisions with O(1P) through a fast, spin-allowed, vibration-to-electronic energy transfer process that produces O(1D):

\[
OH(v \geq 5) + O(^1P) \leftrightarrow OH(0 \leq v' \leq v - 5) + O(^1D). \quad (R4)
\]

Recently, Kalogerakis et al. (2016) presented the first laboratory demonstration of this new OH(v) + O(1P) relaxation pathway and measured its rate coefficient for $v = 9$.

The production at nighttime of electronically excited O(1D) atoms in Reaction (R4) triggers well-known pumping mechanism of the 4.3 µm emission, which was studied in detail for daytime (Nebel et al., 1994; Edwards et al., 1996). Here O(1D) atoms are first quenched by collisions with N_2 in a fast spin-forbidden energy transfer process:

\[
O(^1D) + N_2(0) \leftrightarrow O(^3P) + N_2(v), \quad (R5)
\]

then $N_2(v)$ transfers its energy to ground state N_2 via a very fast single-quanta VV (vibrational–vibrational) process:

\[
N_2(v) + N_2(0) \leftrightarrow N_2(v - 1) + N_2(1),
\]

leaving N_2 molecules with an average of 2.2 vibrational quanta, which is then followed by Reaction (R3).

2 Non-LTE model

A non-LTE (non-local thermodynamical equilibrium) analysis was applied to CO$_2$ and OH using the non-LTE ALI-ARMS (Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) code package (Kutepov et al., 1998; Gusev and Kutepov, 2003; Feofilov and Kutepov, 2012), which is based on the accelerated lambda iteration approach (Rybicki and Hummer, 1991).

Our CO$_2$ non-LTE model is described in detail by Feofilov and Kutepov (2012). We modified its nighttime version to account for the “direct” mechanism, Reactions (R1)–(R3), in a way consistent with that of López-Puertas et al. (2004) and added the “indirect” mechanism of Sharma et al. (2015) and Kalogerakis et al. (2016) as described in detail below. Our OH non-LTE model resembles that of Xu et al. (2012).

2.1 New mechanism of OH(v) relaxation

Sharma et al. (2015) suggested an additional mechanism that contributes to the CO$_2$(v_3) excitation at nighttime, and discussed in detail its available experimental and theoretical evidence. According to this mechanism, highly vibrationally excited OH(v), produced by Reaction (R1), rapidly loses several vibrational quanta in collisions with O(1P) through a fast, spin-allowed, vibration-to-electronic energy transfer process that produces O(1D):

\[
OH(v \geq 5) + O(^1P) \leftrightarrow OH(0 \leq v' \leq v - 5) + O(^1D). \quad (R4)
\]

Recently, Kalogerakis et al. (2016) presented the first laboratory demonstration of this new OH(v) + O(1P) relaxation pathway and measured its rate coefficient for $v = 9$.
2.2 Collisional rate coefficients

We use, in our CO₂ non-LTE model, the same VT (vibrational–translational) and VV collisional rate coefficients for the CO₂ lower vibrational levels as those of López-Puertas et al. (2004). However, a different scaling of these basic rates is applied for higher vibrational levels using the first-order perturbation theory as suggested by Shved et al. (1998).

The reaction rate coefficients applied in this study for modeling OH(v) relaxation transfer of OH(v) vibrational energy to the CO₂(v₂) mode are displayed in Table 1. The total chemical production rate of OH(v) in Reaction (R1) was taken from Sander et al. (2011) and the associated branching ratios for v were taken from Adler-Golden (1997). We treat Reaction (R2) both as a single (1Q, ν′ = 1) and multi-quantum (MQ, ν′ ≥ 2 or 3) quenching process. We use the rate coefficient of this reaction (with associated branching ratios) taken from Table 1 of Adler-Golden (1997) and multiplied it by a low temperature factor of 1.4 (Lacoursière et al., 2003) for MLT regions. The rate coefficient for Reaction (R3) was taken from Shved et al. (1998).

Following Sharma et al. (2015) and Kalogerakis et al. (2016), the rate coefficient of Reaction (R4) was taken as (2.3 ± 1) × 10⁻¹⁰ cm³ s⁻¹ for temperatures near 200 K (with corresponding branching ratios for v ≥ 5). Additionally, for OH(v < 5) collisions with O³(P), which are considered completely inelastic, we used the rate coefficient 5 × 10⁻¹¹ cm³ s⁻¹ from Caridade et al. (2013). The rate coefficient for the reaction O³(D) + N₂(0) (Reaction R5 in Table 1) was taken from Sander et al. (2011) with accounting for the fact that 33% of the electronic energy is transferred to N₂ (Slanger and Black, 1974) producing, on average, 2.2 N₂ vibrational quanta. For the reaction OH(v ≤ 9) + O₂(0) (Reaction R6 in Table 1), we consider single and multi-quantum quenching, using rate coefficients with associated branching ratios taken from Tables 1 and 3 of Adler-Golden (1997), respectively. Rate coefficients are scaled by a factor of 1.18 to account for MLT temperatures (Lacoursière et al., 2003; Thiebaud et al., 2010). Lastly, Reaction (R7) describes an alternative OH–O quenching mechanism which previous studies (López-Puertas et al., 2004; Adler-Golden, 1997) applied in their OH models, where atomic oxygen completely quenches (v → v = 0) OH(v) upon collision. For this reaction, we took the vibrationally independent rate coefficient of 2.0 × 10⁻¹⁰ cm³ s⁻¹ from Adler-Golden (1997).

2.3 Model inputs and calculation scenarios

The nighttime atmospheric pressure, temperature, and densities of trace gases and main atmospheric constituents for calculations presented below were taken from the WACCM (Whole Atmosphere Community Climate Model) model (Marsh et al., 2013).

The following sets of processes and rate coefficients were used in our calculations:

1. (OH-N₂ 1Q) & (OH-O₂ 1Q) & Reaction (R7): this model accounts for Reactions (R1), (R2), (R3), (R6) and (R7) from Table 1. Reaction (R2) is treated as a single-quantum (ν′ = 1) process; Reaction (R6) is also treated as single-quantum (ν′ = ν – 1). This model reproduces the initial model described by López-Puertas et al. (2004).

2. (OH-N₂ 3Q) & (OH-O₂ 1Q) & Reaction (R7): same as model 1; however, Reaction (R2) is treated as the three-quantum (ν′ = 3) process and Reaction (R6) is single-quantum (ν′ = ν – 1). As it is shown below, this version matches best with the final model of López-Puertas et al. (2004), where the efficiency of reaction (R2) was increased by a factor of 3.

3. (OH-N₂ 3Q) & (OH-O₂ MQ) & Reaction (R7): same as model 2; however, Reaction (R6) is treated as multi-quantum (ν′ ≤ ν – 1) process.

4. (OH-N₂ 1Q) & (OH-O₂ MQ) & Reactions (R4), (R5): Reactions (R1) through (R6) from Table 1 are included. This is our basic model version with both “direct”, Reaction (R2), and “indirect”, Reaction (R4) + (R5), mechanisms working together when Reaction (R2) is treated as the single-quantum process (ν′ = 1) as was suggested by Kumer et al. (1978), though Reaction (R6) is treated as the multi-quantum process (any ν′ ≤ ν – 1). A new mechanism, Reactions (R4) and (R5), replaces here Reaction (R7), which is used in other models described above.

5. (OH-N₂ 3Q) & (OH-O₂ MQ) & Reactions (R4), (R5): same as model 4, but “direct” process Reaction (R2) is treated as the three-quantum process corresponding to its 3 times higher efficiency suggested by López-Puertas et al. (2004).

6. (OH-N₂ 2Q) & (OH-O₂ MQ) & Reactions (R4), (R5): same as model 5; however Reaction (R2) is treated as the two-quantum process.

7. (OH-N₂ 1,2Q) & (OH-O₂ MQ) & Reactions (R4), (R5): same as model 5; however Reaction (R2) is treated as two-quantum process for highly resonant transitions OH(9) + N₂(0) → OH(7) + N₂(2) and OH(2) + N₂(0) → OH(0) + N₂(2), and as single-quantum for all others.
Table 1. Significant collisional processes used in model.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reaction rate (cm3 s$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R1) $\text{H + O}_3 \leftrightarrow \text{OH}(v \leq 9) + \text{O}_2$</td>
<td>$k_1 = f_a^2 \times 1.4 \times 10^{-10} \exp(-470/T)$</td>
<td>Sander et al. (2011), Adler-Golden (1997)</td>
</tr>
<tr>
<td>(R2) $\text{OH}(v \leq 9) + \text{N}_2(0) \leftrightarrow \text{OH}(v - v') + \text{N}_2(v')$</td>
<td>$k_2 = f_b^3 \times 1.4 \times 10^{-13}$</td>
<td>Adler-Golden (1997), Lacoursière et al. (2003)</td>
</tr>
<tr>
<td>(R3) $\text{N}_2(1) + \text{CO}_2(0) \leftrightarrow \text{N}_2(0) + \text{CO}_2(v3)$</td>
<td>$k_3 = 8.91 \times 10^{-12} \times T^{-1}$</td>
<td>Shved et al. (1998)</td>
</tr>
<tr>
<td>(R4) $\text{OH}(v \geq 5) + \text{O}(3P) \leftrightarrow \text{OH}(0 \leq v' \leq v - 5) + \text{O}(1D)$</td>
<td>$k_4 = f_c^4 \times (2.3 \pm 1) \times 10^{-10}$</td>
<td>Kalogerakis et al. (2016), Sharma et al. (2015)</td>
</tr>
<tr>
<td>(R5) $\text{O}(3D) + \text{N}_2(0) \leftrightarrow \text{O}(3P) + \text{N}_2(2v)$</td>
<td>$k_5 = 5.0 \times 10^{-11}$</td>
<td>Caridade et al. (2013)</td>
</tr>
<tr>
<td>(R6) $\text{OH}(v \leq 9) + \text{O}_2(0) \leftrightarrow \text{OH}(v') + \text{O}_2(1)$</td>
<td>$k_6 = f_d^6 \times 1.18 \times 10^{-13}$</td>
<td>Sander et al. (2011)</td>
</tr>
<tr>
<td>(R7) $\text{OH}(v \leq 9) + \text{O}(3P) \leftrightarrow \text{OH}(0) + \text{O}(3P)$</td>
<td>$k_7 = 2.0 \times 10^{-10}$</td>
<td>Adler-Golden (1997)</td>
</tr>
</tbody>
</table>

$^a f_a(v = 5–9) = (0.01, 0.03, 0.15, 0.34, 0.47); ^b f_b(v = 1–9) = (0.06, 0.10, 0.17, 0.30, 0.52, 0.91, 1.67, 4.8); ^c f_c(v = 5–9) = (0.91, 0.61, 0.74, 0.87, 1.0); ^d f_d(v = 1–9) = (1.9, 4.77, 13, 23, 43, 102, 119, 309)$

Figure 1 shows the vibrational temperatures of the CO$_2$ levels of four isotopes, giving origin to 4.3 μm bands, which dominate the SABER nighttime signal (López-Puertas et al., 2004). These results were obtained for SABER scan 22, orbit 01264, 77° N, 3 March 2002. The same scan was used for the detailed analysis presented in the work by López-Puertas et al. (2004). The kinetic temperature retrieved for this scan from the SABER 15 μm radiances (SABER data version 2.0) and vibrational temperature of N$_2$(1) are also shown. Solid lines in Fig. 1 represent simulations with our basic model [(OH-N$_2$ 3Q) & (OH-O$_2$ MQ) & Reactions (R4), (R5)], when both the “direct” process Reaction (R2) (in its single-quantum version, as was suggested by Kumer et al., 1978), and the new “indirect” process, Reactions (R4) + (R5) are included. For comparison we also show vibrational temperatures (dashed lines) for the model [(OH-N$_2$ 3Q) & (OH-O$_2$ 1Q) & Reaction (R7)], where the “indirect” mechanism is off and the “direct” process is treated as a three-quantum one, which is equivalent to the 3 times higher efficiency suggested by López-Puertas et al. (2004).

Vibrational temperatures of CO$_2$ levels and N$_2$(1) depart from LTE around 65 km. For both models, vibrational temperatures nearly coincide up to 85–87 km; however, above this altitude, where the OH density is high, vibrational temperatures for [(OH-N$_2$ 3Q) & (OH-O$_2$ 1Q)] & Reaction (R7)] are a few kelvin lower compared to those for [(OH-N$_2$ 1Q) & (OH-O$_2$ MQ) & Reactions (R4), (R5)]. These vibrational temperature differences explain differences of simulated CO$_2$(v3) emission for both models shown in Fig. 2.

In both simulations, CO$_2$(00011) of main isotope 626 and N$_2$(1) have almost identical vibrational temperatures up to ~87 km which is caused by an efficient VV exchange (Reaction R3).

3 Results

3.1 Vibrational temperatures of the CO$_2$(v3) levels

The vibrational temperature T_v is defined from the Boltzmann formula

$$n_v = \frac{g_v}{g_0} \exp\left[\frac{E_v - E_0}{kT_v}\right],$$

which describes the excitation degree of level v against the ground level 0. Here g_v and E_v are the statistical weight and the energy of level v, respectively. If $T_v = T_{\text{kin}}$ then level v is in LTE.
3.2 The CO$_2$ 4.3 µm emission

Figure 2 displays our simulations of SABER channel 7 (4.3 µm) radiances for inputs which correspond to the measurement conditions of the SABER scan described in Sect. 3.1. The calculations also account for the minor contribution in channel 7 radiation emitted by the OH($\nu \leq 9$) vibrational levels.

Our simulation for this scan with the [(OH-N2 1Q) & (OH-O2 1Q) & Reaction (R7)] set of rate coefficients is shown by the violet curve. The turquoise curve displays our results for the rate coefficient set [(OH-N2 3Q) & (OH-O2 1Q) & Reaction (R7)], which simulates the model suggested by López-Puertas et al. (2004) with the factor of 3 increased efficiency of Reaction (R2). One may see that treating Reaction (R3) as a three-quantum VV process strongly enhances the pumping of the CO$_2$(v$_3$) vibrations and that the 4.3 µm radiance is in agreement with López-Puertas et al. (2004) results.

The red curve in Fig. 2, which corresponds to our [(OH-N2 1Q) & (OH-O2 1Q) & Reaction (R7)] model. This demonstrates a very high efficiency of the “indirect” channel compared to the “direct” one since it provides the same pumping of CO$_2$(v$_3$) even when OH(ν) energy is efficiently removed in the multi-quantum version of Reaction (R6).

In Fig. 2, we show (black curve with diamonds) the channel 7 radiance profile for the SABER scan specified in Sect. 3.1. Comparing turquoise and red curves with this measurement, one may see that both the “direct” mechanism alone in its three-quantum version and the combination of “indirect” and single-quantum “direct” mechanisms are close to the SABER radiance for this scan. However, to provide this pumping level, the multi-quantum “direct” mechanism needs to be supported by the inefficient single-quantum OH(ν) quenching in Reaction (R6) by collisions with O$_2$, which helps maintain a higher population of OH(ν). We also note here that both our violet [(OH-N2 1Q) & (OH-O2 1Q) & Reaction (R7)] and turquoise [(OH-N2 3Q) & (OH-O2 1Q) & Reaction (R7)] curves reproduce the corresponding results in Fig. 10 of López-Puertas et al. (2004), short-dash and solid lines, respectively, very well.

We also show in Fig. 2 our study of how both the “direct” and “indirect” mechanisms work together when the “direct” process Reaction (R2) is treated as a multi-quantum.

The magenta curve in this plot is the result obtained with the model [(OH-N2 3Q) & (OH-O2 MQ) & Reactions (R4), (R5)] when Reaction (R2) is treated as a three-quantum process. This combination of both mechanisms provides high CO$_2$(v$_3$) pumping and subsequently strong channel 7 emission. The latter exceeds the turquoise and red curves by 20–45 % in the altitude range considered and strongly deviates from the measured radiance profile.

Two other results of this study are shown only on the right panel of this plot for the signal differences. The light blue curve corresponds to simulations with the [(OH-N2 2Q) & (OH-O2 MQ) & Reactions (R4), (R5)] model when the quantum transfer in Reaction (R2) is reduced from 3 to 2. The dark green curve is obtained for the case when Reaction (R2) is treated as two-quantum process for highly resonant transitions OH(9) + N$_2$(0) → OH(7) + N$_2$(2) and OH(2) + N$_2$(0) → OH(0) + N$_2$(2), and as single-quantum for all other vibrational levels. It is seen that both of these input versions bring the calculated radiance closer to our result for a single-quantum “direct” process Reaction (R2) (red curve) and to our simulation [(OH-N2 3Q) & (OH-O2 1Q) & Reaction (R7)] of results obtained based on López-Puertas et al. (2004), turquoise.

In Fig. 3 (upper and middle rows) we compare our simulation results for two sets of rate coefficients: [(OH-N2 1Q)
Figure 3. Top: measured and simulated nighttime radiances for SABER channel 7 (4.3 µm). Middle: channel 7 radiance relative differences \((\text{simulated}-\text{measured})/\text{measured}\) in percent. Bottom: measured and simulated SABER Volume Emissions Rate Ratios (channel 8 / channel 9). Four standard atmospheres are displayed: (a) mid-latitude summer (MLS), (b) tropical (TROP), (c) mid-latitude winter (MLW), and (d) sub-Arctic winter (SAW) for selected SABER scans described in Table 2. SABER measured with NER (noise equivalent radiance) (black); \([\text{OH-N}_2 \text{ 1Q} & \text{OH-O}_2 \text{ MQ} & \text{Reactions (R4), (R5)}]\) (red); \([\text{OH-N}_2 \text{ 3Q} & \text{OH-O}_2 \text{ 1Q} & \text{Reaction (R7)}]\) (turquoise); see Sect. 2.3 for a description of calculation scenarios.

3.3 Comparison of OH vibrational populations with ground- and space-based observations

In Fig. 4 we present relative OH\((\nu)\) populations calculated using three different sets of rate coefficients discussed in the previous section, which provided comparably high enhancement of the CO\(_2\)\((\nu_3)\) emission. These calculations are compared with the vibrational populations derived from ground (panel a) and space-based (panel b) observations of OH emissions.

Measured populations (black) displayed in panel (a) were recorded by Cosby and Slanger (2007) on 3 March 2000 using the echelle spectrograph and imager (ESI) on the Keck II telescope at Mauna Kea (19.8206° N, 155.4681° W). The authors measured emission intensities of the 16 OH Meinel bands which were converted into the OH\((\nu)\) column densities and normalized to column density of OH\((\nu = 9).\) Several observations of OH emissions were recorded throughout the night. We display the average column densities as well as their variation ranges for each vibrational level. The
three simulated distributions (red, turquoise, and magenta) in this panel are modeled using WACCM inputs taken on 3 March 2000 at latitude 20° N at local midnight.

Measured densities displayed in panel (b) of Fig. 4 were taken from Migliorini et al. (2015), who analyzed VIRTIS (for Visible and Infrared Thermal Imaging Spectrometer) measurements on board the Rosetta mission. VIRTIS performed two limb scans of the OH Meinel bands from 87 to 105 km covering the latitude range from 38 to 47° N between 01:30 and 02:00 solar local time, in November 2009. To achieve a high signal-to-noise ratio, 300 radiance spectra (OH $\Delta v = 1$ and 2) were collected and averaged. We show in panel (b) of Fig. 4 the OH(v) population distribution normalized to OH($v = 9$) derived in this study as well as corresponding uncertainties. The three simulated distributions (red, turquoise, and magenta) in this panel are modeled using WACCM inputs taken on 22 November 2000 at latitude 45° N at local midnight.

To simulate the ground-based observations of Cosby and Slanger (2007), panel (a), the calculated relative populations were integrated over the entire altitude range of our model (30–135 km). For panel (b), we have integrated calculated OH(v) densities of 87 to 105 km as observed by VIRTIS from Migliorini et al. (2015) to simulate mean population distribution obtained in this study.

The turquoise profiles in both panels of Fig. 4 represent results obtained with our set of rate coefficients [(OH-N$_2$ 3Q) & (OH-O$_2$ 1Q) & Reaction (R7)] similar to the one used in López-Puertas et al. (2004), where the authors treated the OH–N$_2$ reaction with an efficiency increased by a factor of 3, the OH–O$_2$ reaction as single-quantum, and the OH–O reaction as a “sudden death” quenching or chemical OH removal process (Reaction R7), with v independent rate coefficient of 2.0×10^{-10} cm3 s$^{-1}$. In panel (a), the turquoise profile shows higher relative populations compared to measurements for upper vibrational levels $v > 4$, whereas in panel (b) this model shows populations within the uncertainty range of measurements for $v > 4$. For lower vibrational levels $v \leq 4$, the populations calculated with this model are, however, significantly lower than measured ones: by 30 % for $v = 3$ in the panel (a) and by up to 85 % for $v = 1$ in panel (b). A significantly slower increase in populations calculated with the [(OH-N$_2$ 3Q) & (OH-O$_2$ 1Q) & Reaction (R7)] model compared to measurements can be explained by the lack of efficient mechanisms redistributing the OH(v) energy from higher vibrational levels to lower ones. The single-quantum OH–O$_2$ reaction also allows for more excited OH molecules in the upper vibrational levels relative to a multi-quantum process. Additionally, a slower increase in calculated populations with the v decreasing compared to measured ones which is seen in both panels, is the effect of the high quenching rate coefficient of the Reaction (R7) for lower vibrational levels for which this reaction dominates over the single-quantum O$_2$ quenching.

The situation is different when our basic model [(OH-N$_2$ 1Q) & (OH-O$_2$ MQ) & Reactions (R4), (R5)] is applied (red curves). As discussed above in the previous section, this model provides the same level of the CO$_2$(v$_2$) emission pumping as the extreme model of López-Puertas et al. (2004); compare red and turquoise curves in Fig. 2. However, they demonstrate significantly different population distributions. Relative OH population distribution in panel (a) shows our standard model in very good agreement with the results from Cosby and Slanger (2007), falling completely within the variation range of these measurements. Panel (b) also shows excellent agreement between calculations and measurements, where the former lie nearly completely within the measurement error bars for the majority of vibrational levels. In both panels our results reproduce well the steady upward trend in populations from upper to lower vibrational levels. Significantly higher populations of lower OH levels in this model are the result of redistribution of higher-vibrational-level energy to lower levels due to two dominant multi-quantum quenching mechanisms, namely the new Reaction (R4) and the multi-quantum version of Reaction (R6). We also note that Reaction (R4) uses a lower rate coefficient than Reaction (R7) for quenching the lower vibrational levels $v < 5$, which results in maintaining their higher populations.

Measured OH($v = 3$) (panel b) was the only population which showed disagreement with our model. Various reasons of increased measured population at $v = 3$ are discussed by Migliorini et al. (2015); however, no definitive conclusions were given.

Above 90 km atomic oxygen density increases rapidly with the altitude. As a result the role of Reaction (R4) in quenching higher OH vibrational and pumping lower levels increases. This effect is easily seen in panel (b) of Fig. 4, where mean OH(v) densities for higher altitude region 87–105 km are compared. The turquoise curve (no Reaction R4) in this panel shows lower populations compared to those calculated with Reaction (R4) included.

The magenta profiles in both panels represent our calculations with the model [(OH-N$_2$ 3Q) & (OH-O$_2$ MQ) & Reactions (R4), (R5)], which is identical to our standard model except for the Reaction (R2) treated as the three-quantum one. The multi-quantum OH–N$_2$ VV transfer provides faster quenching of excited OH, hence, a lower overall population of the magenta profiles compared to red profiles. Despite showing reasonable agreement with measurements in both panels, this model caused, however, an excessive increase for the 4.3 μm emissions, as seen in Fig. 2.

3.4 OH 1.6 and 2.0 μm emissions

SABER channels 8 (2.0 μm), and 9 (1.6 μm) are dominated by the OH(v) emission from levels $v = 8–9$ and $v = 3–5$, respectively. We simulated channel 8 and 9 radiances for four atmospheric models from Table 2. Results are shown in Fig. 3, bottom row, as ratios of volume emission rates for
Table 2. Selected nighttime SABER scans.

<table>
<thead>
<tr>
<th>Atmosphere</th>
<th>Latitude</th>
<th>Day</th>
<th>Orbit</th>
<th>Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) mid-latitude summer (MLS)</td>
<td>37° S</td>
<td>26 Jan 2004</td>
<td>11 556</td>
<td>62</td>
</tr>
<tr>
<td>(b) tropical (TROP)</td>
<td>6° N</td>
<td>20 Jan 2008</td>
<td>33 130</td>
<td>48</td>
</tr>
<tr>
<td>(c) mid-latitude winter (MLW)</td>
<td>34° S</td>
<td>15 Jul 2010</td>
<td>46 594</td>
<td>90</td>
</tr>
<tr>
<td>(d) sub-Arctic winter (SAW)</td>
<td>72° S</td>
<td>15 Jul 2010</td>
<td>46 585</td>
<td>78</td>
</tr>
</tbody>
</table>

4 Conclusions

Kumer et al. (1978) first proposed the transfer of vibrational energy from chemically produced OH(ν) in the nighttime mesosphere to the CO$_2$(ν$_3$) vibration, OH(ν) + N$_2$(0) → CO$_2$(ν$_3$). The effect of this “direct” mechanism on the SABER nighttime 4.3 µm emission was studied in detail by López-Puertas et al. (2004), who showed that in order to match observations, an additional enhancement is needed that would be equivalent to the production of 2.8–3 N$_2$(1) molecules instead of one molecule for each quenching reaction OH(ν) + N$_2$(0). López-Puertas et al. (2004) concluded that the required 30 % efficiency in the OH(ν) + N$_2$(0) energy transfer is, in principle, possible, although the mecha-

channels 8 and 9. Volume emission rate (VER) is defined as the sum

$$R_\nu = \sum A_{\nu,\nu} [\text{OH}(\nu)] = [\text{OH}] \sum A_{\nu,\nu} p_\nu,$$

over all transitions contributing to the channel, where $p_\nu = [\text{OH}(\nu)] / [\text{OH}]$ is the probability of the OH molecule to be in the vibrational state ν. It follows from this expression that the VER ratio does not depend on the total OH density and is, therefore, convenient for analyzing impacts of various populating/quenching mechanisms on OH(ν) distribution. The calculations with our basic model [(OH-N$_2$ 1Q) & (OH-O$_2$ MQ) & Reactions (R4), (R5)] are shown in Fig. 3 in red, and those for the model [(OH-N$_2$ 3Q) & (OH-O$_2$ MQ) & Reaction (R7)] with the three-quantum mechanism, Reaction (R2), in turquoise. Black curves in this plot display SABER-measured VER ratios, for which VERs were obtained with the Abel inversion procedure, similar to that described by López-Puertas et al. (2004), from the SABER channel 8 and 9 limb radiances for scans listed in Table 2.

Comparing red and turquoise profiles in Fig. 3 (bottom row), one may see that our standard model (red) shows significantly lower VER ratios for altitudes 85–100 km than the model of López-Puertas et al. (2004), turquoise. These differences between ratios are a result of very different OH(ν) population distributions (Fig. 4) for each model, which were discussed in the previous section. The channel 8/channel 9 VER ratios reflect these distributions very well since channel 8 is sensitive to the OH(ν) emissions from higher levels 8 and 9, whereas channel 9 records emissions of lower levels 3–5. A significantly higher population of lower vibrational levels in our model (red curves in Fig. 4) explain low VER ratios. In contrast, the model [(OH-N$_2$ 3Q) & (OH-O$_2$ 1Q) & Reaction (R7)], which underpredicts lower level populations, provides VER ratios which significantly exceed both our model results and measurements for altitudes above 90 km, where [O] density rapidly increases with altitude. This comparison demonstrates the strong impact of Reaction (R2), which provides efficient quenching of higher OH vibrational levels in collisions with O(3P) atoms in this altitude region.

Figure 4. Relative OH(ν) populations, normalized to OH(ν = 9), for measurements taken: (a) on 3 March 2000 at 20° N and (b) in November 2009 between 38 and 47° N. Measured populations (black with diamonds); simulations: [(OH-N$_2$ 1Q) & (OH-O$_2$ MQ) & Reactions (R4), (R5)] (red); [(OH-N$_2$ 3Q) & (OH-O$_2$ 1Q) & Reaction (R7)] (turquoise); (OH-N$_2$ 3Q) & (OH-O$_2$ MQ) & Reactions (R4), (R5)] (magenta). See Sect. 2.3 for a description of calculation scenarios.

4 Conclusions

Kumer et al. (1978) first proposed the transfer of vibrational energy from chemically produced OH(ν) in the nighttime mesosphere to the CO$_2$(ν$_3$) vibration, OH(ν) ⇒ N$_2$(ν) ⇒ CO$_2$(ν$_3$). The effect of this “direct” mechanism on the SABER nighttime 4.3 µm emission was studied in detail by López-Puertas et al. (2004), who showed that in order to match observations, an additional enhancement is needed that would be equivalent to the production of 2.8–3 N$_2$(1) molecules instead of one molecule for each quenching reaction OH(ν) + N$_2$(0). López-Puertas et al. (2004) concluded that the required 30 % efficiency in the OH(ν) + N$_2$(0) energy transfer is, in principle, possible, although the mecha-
nism(s) whereby the energy is transferred is (are) not currently known.

Recently, Sharma et al. (2015) suggested a new efficient "indirect" channel of the OH(ν) energy transfer to the N2(ν) vibrations, OH(ν) + O(3P) ⇒ N2(ν) and showed that it may provide an additional enhancement of the MLT nighttime 4.3 μm emission. Kalogerakis et al. (2016) provided a definitive laboratory confirmation of new OH(ν) + O vibrational relaxation pathway and measured its rate for OH(ν = 9) + O.

We included the new "indirect" energy transfer channel in our non-LTE model of the nighttime MLT emissions of CO2 and OH molecules and studied in detail the impact of "direct" and "indirect" mechanisms on simulated vibrational level populations and radiances. The calculations were compared with (a) the SABER/TIMED nighttime 4.3 μm CO2 and OH 1.6 and 2.0 μm limb radiances of MLT and (b) with the ground and space observations of the OH(ν) densities in the nighttime mesosphere. We found that new "indirect" channel provides significant enhancement of the 4.3 μm CO2 emission. This model also produces OH(ν) density distributions which are in good agreement with both SABER limb OH emission measurements and the ground and space observations in the mesosphere. Similarly strong enhancement of 4.3 μm emission can also be achieved with the "direct" mechanism alone assuming a factor of 3 increase in efficiency, as was suggested by López-Puertas et al. (2004). This model does not, however, reproduce either the SABER-measured VER ratios of the OH 1.6 and 2.0 μm channels or the ground and space measurements of the OH(ν) densities. This discrepancy is caused by the lack of efficient redistribution of the OH(ν) energy from the higher vibrational levels emitting at 2.0 μm to lower levels emitting at 1.6 μm in the models based on the "direct" mechanism alone. In contrast, this new "indirect" mechanism (Reactions R4 and R5 of Table 1), efficiently removes at least five quanta in each OH(ν) + O(3P) collision from high OH vibrational levels. Supported also by the multi-quantum OH(ν) + O2 quenching (Reaction R6 of Table 1), the new mechanism produces OH(ν) distributions which are in agreement with both measured VER ratios and observed OH(ν) populations.

The results of our study suggest that the missing nighttime mechanism of CO2(ν1) pumping has finally been identified. This confidence is based on the fact that the new mechanism accounts for most of the discrepancies between measured and calculated 4.3 μm emission for various atmospheric situations, leaving relatively little room for other processes, among them the multi-quantum "direct" mechanism. The accounting for the multi-quantum transfer in reaction OH(ν) + N2 together with the "indirect" mechanism has little influence on the OH(ν) population distributions; however, it can enhance the 4.3 μm emission. Therefore, further laboratory and/or theoretical investigation of this reaction is needed to define its role. Further improvements for the new "indirect" mechanism will require optimizing the set of rate coefficients used for OH(ν) relaxation by O(3P) and O2 at mesospheric temperatures and, in particular, understanding the dependence of the "indirect" mechanism on the OH vibrational level. Relevant laboratory measurements and theoretical calculations are sorely needed to understand these relaxation rates and the quantitative details of the applicable mechanism pathways. Nevertheless, the results presented here clearly demonstrate significant progress in understanding the mechanisms of the nighttime OH and CO2 emission generation in MLT.

Data availability. The model inputs and results of calculations presented in Figs. 1–4 are available on the Open Science Framework website: https://doi.org/10.17605/OSF.IO/Q82Vd (Panka and Kutepov, 2017).

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We would like to thank Ramesh Sharma for his helpful comments and productive collaboration with the new nighttime mechanism implementation. We would also like to thank Daniel Marsh for providing WACCM atmospheric inputs for our non-LTE model. The work by P. A. Panka was supported by the NASA grant NNX14AN71G and the NESSF Fellowship. The work by A. A. Kutepov was supported by the NSF grant 1301762 and the NASA grant NNX15AN08G. The contributions of K. S. Kalogerakis were supported by the NSF Grant 1441896. The work of A. G. Feofilov was supported by the project "Towards a better interpretation of atmospheric phenomena" of the French National Program LEFE/INSU.

Edited by: Franz-Josef Lübken
Reviewed by: three anonymous referees

References

