Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 17, issue 15
Atmos. Chem. Phys., 17, 9567–9583, 2017
https://doi.org/10.5194/acp-17-9567-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: CHemistry and AeRosols Mediterranean EXperiments (ChArMEx)...

Atmos. Chem. Phys., 17, 9567–9583, 2017
https://doi.org/10.5194/acp-17-9567-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Aug 2017

Research article | 09 Aug 2017

Spatial extent of new particle formation events over the Mediterranean Basin from multiple ground-based and airborne measurements

Kevin Berland et al.

Viewed

Total article views: 1,499 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
857 578 64 1,499 84 41 66
  • HTML: 857
  • PDF: 578
  • XML: 64
  • Total: 1,499
  • Supplement: 84
  • BibTeX: 41
  • EndNote: 66
Views and downloads (calculated since 12 Dec 2016)
Cumulative views and downloads (calculated since 12 Dec 2016)

Viewed (geographical distribution)

Total article views: 1,490 (including HTML, PDF, and XML) Thereof 1,481 with geography defined and 9 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 11 Jul 2020
Publications Copernicus
Download
Short summary
New particle formation (NPF) from gas-phase precursors is a process that is expected to drive the total number concentration of particles in the atmosphere. Here we use measurements performed simultaneously in Corsica, Crete and Mallorca to show that the spatial extent of the NPF events are several hundreds of kilometers large. Airborne measurements additionally show that nanoparticles in the marine atmosphere can either be of marine origin or from higher altitudes above the continent.
New particle formation (NPF) from gas-phase precursors is a process that is expected to drive...
Citation